论文题目:基于前向神经网络的三维模型检索

Yujie Liu, Xiaolan Yao, Zongmin Li
{"title":"论文题目:基于前向神经网络的三维模型检索","authors":"Yujie Liu, Xiaolan Yao, Zongmin Li","doi":"10.1109/SMI.2008.4547992","DOIUrl":null,"url":null,"abstract":"In this paper, a forward neural network (FNN) is used for 3D model retrieval. Also the descriptor based on exponentially decaying Euclidean distance transforms (EDT) is adapted to represent the feature of a 3D model. As a kind of machine learning method, FNN is trained by the PSB trained data, and then used to sort the testing data set in this contest.","PeriodicalId":118774,"journal":{"name":"2008 IEEE International Conference on Shape Modeling and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SHREC’08 entry: Forward neural network-based 3D model retrieval\",\"authors\":\"Yujie Liu, Xiaolan Yao, Zongmin Li\",\"doi\":\"10.1109/SMI.2008.4547992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a forward neural network (FNN) is used for 3D model retrieval. Also the descriptor based on exponentially decaying Euclidean distance transforms (EDT) is adapted to represent the feature of a 3D model. As a kind of machine learning method, FNN is trained by the PSB trained data, and then used to sort the testing data set in this contest.\",\"PeriodicalId\":118774,\"journal\":{\"name\":\"2008 IEEE International Conference on Shape Modeling and Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Shape Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMI.2008.4547992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2008.4547992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将前向神经网络(FNN)用于三维模型检索。此外,基于指数衰减欧氏距离变换(EDT)的描述符也适用于表示三维模型的特征。FNN作为一种机器学习方法,通过PSB训练数据进行训练,然后在本次比赛中用于对测试数据集进行排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SHREC’08 entry: Forward neural network-based 3D model retrieval
In this paper, a forward neural network (FNN) is used for 3D model retrieval. Also the descriptor based on exponentially decaying Euclidean distance transforms (EDT) is adapted to represent the feature of a 3D model. As a kind of machine learning method, FNN is trained by the PSB trained data, and then used to sort the testing data set in this contest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organizing primitives for automated shape composition SHREC’08 entry: 3D model retrieval based on the V system invariant moment SHape REtrieval contest 2008: 3D face scans Efficient solution to systems of multivariate polynomials using expression trees SHape REtrieval Contest (SHREC) 2008
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1