一种基于神经网络的混沌系统识别智能计算算法

R. Archana, A. Unnikrishnan, R. Gopikakumari, M. Rajesh
{"title":"一种基于神经网络的混沌系统识别智能计算算法","authors":"R. Archana, A. Unnikrishnan, R. Gopikakumari, M. Rajesh","doi":"10.1109/RAICS.2011.6069382","DOIUrl":null,"url":null,"abstract":"The identification of nonlinear systems with chaotic behavior using a neural network based computational algorithm is presented.. A neural network is trained on the measured output data of the actual system. The network parameters viz. the neural network weights are estimated using the Elman back propagation algorithm .Further, The Rossler and the Chen chaotic systems are used for simulation. The simulation results show that the ANN trained with back propagation algorithm performs very well and give exact reproduction of the output time series and states, as generated from the dynamical equations. The Kaplan Yorke dimensions and the Lyapunov exponents of the model are calculated.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An intelligent computational algorithm based on neural networks for the identification of chaotic systems\",\"authors\":\"R. Archana, A. Unnikrishnan, R. Gopikakumari, M. Rajesh\",\"doi\":\"10.1109/RAICS.2011.6069382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of nonlinear systems with chaotic behavior using a neural network based computational algorithm is presented.. A neural network is trained on the measured output data of the actual system. The network parameters viz. the neural network weights are estimated using the Elman back propagation algorithm .Further, The Rossler and the Chen chaotic systems are used for simulation. The simulation results show that the ANN trained with back propagation algorithm performs very well and give exact reproduction of the output time series and states, as generated from the dynamical equations. The Kaplan Yorke dimensions and the Lyapunov exponents of the model are calculated.\",\"PeriodicalId\":394515,\"journal\":{\"name\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2011.6069382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于神经网络的非线性混沌系统辨识算法。在实际系统的测量输出数据上训练神经网络。利用Elman反向传播算法估计网络参数即神经网络权值,并利用Rossler混沌系统和Chen混沌系统进行仿真。仿真结果表明,用反向传播算法训练的人工神经网络具有良好的性能,可以精确地再现由动态方程生成的输出时间序列和状态。计算了模型的Kaplan Yorke维数和Lyapunov指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An intelligent computational algorithm based on neural networks for the identification of chaotic systems
The identification of nonlinear systems with chaotic behavior using a neural network based computational algorithm is presented.. A neural network is trained on the measured output data of the actual system. The network parameters viz. the neural network weights are estimated using the Elman back propagation algorithm .Further, The Rossler and the Chen chaotic systems are used for simulation. The simulation results show that the ANN trained with back propagation algorithm performs very well and give exact reproduction of the output time series and states, as generated from the dynamical equations. The Kaplan Yorke dimensions and the Lyapunov exponents of the model are calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fast approximate kernel k-means clustering method for large data sets Hue-preserving color image enhancement using particle swarm optimization Novel stable sram for ultra low power deep submicron cache memories A level shifter for deep-submicron node using multi-threshold technique Efficient computation of codon bias spectra and their implications in genome sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1