一种用于能量收集装置的可重构能量存储体系结构

A. Colin, E. Ruppel, Brandon Lucia
{"title":"一种用于能量收集装置的可重构能量存储体系结构","authors":"A. Colin, E. Ruppel, Brandon Lucia","doi":"10.1145/3173162.3173210","DOIUrl":null,"url":null,"abstract":"Battery-free, energy-harvesting devices operate using energy collected exclusively from their environment. Energy-harvesting devices allow maintenance-free deployment in extreme environments, but requires a power system to provide the right amount of energy when an application needs it. Existing systems must provision energy capacity statically based on an application's peak demand which compromises efficiency and responsiveness when not at peak demand. This work presents Capybara: a co-designed hardware/software power system with dynamically reconfigurable energy storage capacity that meets varied application energy demand. The Capybara software interface allows programmers to specify the energy mode of an application task. Capybara's runtime system reconfigures Capybara's hardware energy capacity to match application demand. Capybara also allows a programmer to write reactive application tasks that pre-allocate a burst of energy that it can spend in response to an asynchronous (e.g., external) event. We instantiated Capybara's hardware design in two EH devices and implemented three reactive sensing applications using its software interface. Capybara improves event detection accuracy by 2x-4x over statically-provisioned energy capacity, maintains response latency within 1.5x of a continuously-powered baseline, and enables reactive applications that are intractable with existing power systems.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":"{\"title\":\"A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices\",\"authors\":\"A. Colin, E. Ruppel, Brandon Lucia\",\"doi\":\"10.1145/3173162.3173210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery-free, energy-harvesting devices operate using energy collected exclusively from their environment. Energy-harvesting devices allow maintenance-free deployment in extreme environments, but requires a power system to provide the right amount of energy when an application needs it. Existing systems must provision energy capacity statically based on an application's peak demand which compromises efficiency and responsiveness when not at peak demand. This work presents Capybara: a co-designed hardware/software power system with dynamically reconfigurable energy storage capacity that meets varied application energy demand. The Capybara software interface allows programmers to specify the energy mode of an application task. Capybara's runtime system reconfigures Capybara's hardware energy capacity to match application demand. Capybara also allows a programmer to write reactive application tasks that pre-allocate a burst of energy that it can spend in response to an asynchronous (e.g., external) event. We instantiated Capybara's hardware design in two EH devices and implemented three reactive sensing applications using its software interface. Capybara improves event detection accuracy by 2x-4x over statically-provisioned energy capacity, maintains response latency within 1.5x of a continuously-powered baseline, and enables reactive applications that are intractable with existing power systems.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"167\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3173210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 167

摘要

无电池,能量收集设备使用的能量完全从他们的环境中收集。能量收集设备允许在极端环境中免维护部署,但需要一个电力系统在应用程序需要时提供适量的能量。现有系统必须根据应用程序的峰值需求静态地提供能源容量,这在非峰值需求时损害了效率和响应能力。这项工作提出了Capybara:一个共同设计的硬件/软件电源系统,具有动态可重构的能量存储容量,满足各种应用能源需求。Capybara软件接口允许程序员指定应用程序任务的能量模式。Capybara的运行时系统重新配置了Capybara的硬件能量容量,以满足应用程序的需求。Capybara还允许程序员编写响应式应用程序任务,这些任务可以预先分配能量,用于响应异步(例如外部)事件。我们在两个EH设备中实例化了Capybara的硬件设计,并使用其软件接口实现了三个反应传感应用。与静态配置的能量容量相比,Capybara将事件检测精度提高了2 -4倍,将响应延迟保持在持续供电基线的1.5倍以内,并支持现有电力系统难以处理的无功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices
Battery-free, energy-harvesting devices operate using energy collected exclusively from their environment. Energy-harvesting devices allow maintenance-free deployment in extreme environments, but requires a power system to provide the right amount of energy when an application needs it. Existing systems must provision energy capacity statically based on an application's peak demand which compromises efficiency and responsiveness when not at peak demand. This work presents Capybara: a co-designed hardware/software power system with dynamically reconfigurable energy storage capacity that meets varied application energy demand. The Capybara software interface allows programmers to specify the energy mode of an application task. Capybara's runtime system reconfigures Capybara's hardware energy capacity to match application demand. Capybara also allows a programmer to write reactive application tasks that pre-allocate a burst of energy that it can spend in response to an asynchronous (e.g., external) event. We instantiated Capybara's hardware design in two EH devices and implemented three reactive sensing applications using its software interface. Capybara improves event detection accuracy by 2x-4x over statically-provisioned energy capacity, maintains response latency within 1.5x of a continuously-powered baseline, and enables reactive applications that are intractable with existing power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CALOREE: Learning Control for Predictable Latency and Low Energy Session details: Session 7B: Memory 2 Session details: Session 4A: Memory 1 BranchScope: A New Side-Channel Attack on Directional Branch Predictor Devirtualizing Memory in Heterogeneous Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1