基于序列核的支持向量机后端分类器的口语识别

A. Ziaei, S. Ahadi, S. M. Mirrezaie, H. Yeganeh
{"title":"基于序列核的支持向量机后端分类器的口语识别","authors":"A. Ziaei, S. Ahadi, S. M. Mirrezaie, H. Yeganeh","doi":"10.1109/ISSPIT.2008.4775713","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new back-end classifier for GMM-LM based language identification systems. Our new proposed system consists of two main parts, mapping matrix and bank of SVMs. These two parts are located in series after GMM-LM system. The mapping matrix, maps the language models' output vectors to a new space in which the languages are more separable than before. Then each SVM in the SVM bank separates one language from the others. We used a new sequence kernel for each SVM in the bank. We show that our new sequence kernel-based SVMs separate languages more efficiently than common Gaussian mixture and GLDS SVM back-end classifiers. Also our new mapping matrix outperforms common linear discriminant matrix in separating classes from each other. Using these two parts increases the LID accuracy noticeably in comparison with the other LDA-GMM and LDA-GLDS SVM back-end classifiers. Our experiments on 5 languages from OGI-TS multilanguage task, prove our claim.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spoken Language Identification Using a New Sequence Kernel-based SVM Back-end Classifier\",\"authors\":\"A. Ziaei, S. Ahadi, S. M. Mirrezaie, H. Yeganeh\",\"doi\":\"10.1109/ISSPIT.2008.4775713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new back-end classifier for GMM-LM based language identification systems. Our new proposed system consists of two main parts, mapping matrix and bank of SVMs. These two parts are located in series after GMM-LM system. The mapping matrix, maps the language models' output vectors to a new space in which the languages are more separable than before. Then each SVM in the SVM bank separates one language from the others. We used a new sequence kernel for each SVM in the bank. We show that our new sequence kernel-based SVMs separate languages more efficiently than common Gaussian mixture and GLDS SVM back-end classifiers. Also our new mapping matrix outperforms common linear discriminant matrix in separating classes from each other. Using these two parts increases the LID accuracy noticeably in comparison with the other LDA-GMM and LDA-GLDS SVM back-end classifiers. Our experiments on 5 languages from OGI-TS multilanguage task, prove our claim.\",\"PeriodicalId\":213756,\"journal\":{\"name\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2008.4775713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的基于GMM-LM的语言识别系统后端分类器。该系统主要由映射矩阵和支持向量机库两部分组成。这两个部分在GMM-LM系统之后串联起来。映射矩阵将语言模型的输出向量映射到一个新的空间,在这个空间中,语言比以前更可分离。然后,支持向量机库中的每个支持向量机将一种语言与其他语言分离开来。我们对库中的每个支持向量机使用一个新的序列核。我们证明了我们的基于序列核的支持向量机比常见的高斯混合和GLDS支持向量机后端分类器更有效地分离语言。此外,我们的映射矩阵在分类方面也优于一般的线性判别矩阵。与其他LDA-GMM和LDA-GLDS SVM后端分类器相比,使用这两个部分显著提高了LID精度。我们在OGI-TS多语言任务中对5种语言进行了实验,证明了我们的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spoken Language Identification Using a New Sequence Kernel-based SVM Back-end Classifier
In this paper, we present a new back-end classifier for GMM-LM based language identification systems. Our new proposed system consists of two main parts, mapping matrix and bank of SVMs. These two parts are located in series after GMM-LM system. The mapping matrix, maps the language models' output vectors to a new space in which the languages are more separable than before. Then each SVM in the SVM bank separates one language from the others. We used a new sequence kernel for each SVM in the bank. We show that our new sequence kernel-based SVMs separate languages more efficiently than common Gaussian mixture and GLDS SVM back-end classifiers. Also our new mapping matrix outperforms common linear discriminant matrix in separating classes from each other. Using these two parts increases the LID accuracy noticeably in comparison with the other LDA-GMM and LDA-GLDS SVM back-end classifiers. Our experiments on 5 languages from OGI-TS multilanguage task, prove our claim.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1