基于内容检索的Ad Hoc网络语义视频聚类

Bo Yang, M. Manohar
{"title":"基于内容检索的Ad Hoc网络语义视频聚类","authors":"Bo Yang, M. Manohar","doi":"10.1109/CBMI.2009.31","DOIUrl":null,"url":null,"abstract":"Traditional content-based retrieval approaches employ either centralized or flooding strategies in ad hoc networks, which may result in low fault tolerance and high search cost making them inefficient. To facilitate an efficient video retrieval, we propose a logic-based content summary framework that is able to represent semantic contents of video data using concise logic terms. In this method the video data is characterized by color and wavelet coefficients which will be converted into logical terms by using threshold operators. The logical terms are then summarized as node content descriptions. The nodes containing similar node descriptions are clustered into a virtual infrastructure according to the semantic content.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semantic Video Clustering in Ad Hoc Networks for Content-Based Retrieval\",\"authors\":\"Bo Yang, M. Manohar\",\"doi\":\"10.1109/CBMI.2009.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional content-based retrieval approaches employ either centralized or flooding strategies in ad hoc networks, which may result in low fault tolerance and high search cost making them inefficient. To facilitate an efficient video retrieval, we propose a logic-based content summary framework that is able to represent semantic contents of video data using concise logic terms. In this method the video data is characterized by color and wavelet coefficients which will be converted into logical terms by using threshold operators. The logical terms are then summarized as node content descriptions. The nodes containing similar node descriptions are clustered into a virtual infrastructure according to the semantic content.\",\"PeriodicalId\":417012,\"journal\":{\"name\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2009.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的基于内容的检索方法在自组织网络中采用集中式或泛洪式策略,导致容错性低,搜索成本高,效率低下。为了方便高效的视频检索,我们提出了一个基于逻辑的内容摘要框架,该框架能够使用简洁的逻辑术语表示视频数据的语义内容。在该方法中,视频数据由颜色和小波系数表征,并通过阈值算子转换为逻辑项。然后将逻辑术语总结为节点内容描述。将包含相似节点描述的节点根据语义内容聚类成虚拟基础结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Video Clustering in Ad Hoc Networks for Content-Based Retrieval
Traditional content-based retrieval approaches employ either centralized or flooding strategies in ad hoc networks, which may result in low fault tolerance and high search cost making them inefficient. To facilitate an efficient video retrieval, we propose a logic-based content summary framework that is able to represent semantic contents of video data using concise logic terms. In this method the video data is characterized by color and wavelet coefficients which will be converted into logical terms by using threshold operators. The logical terms are then summarized as node content descriptions. The nodes containing similar node descriptions are clustered into a virtual infrastructure according to the semantic content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1