脑磁共振双通道图像分割的混合方法

Shan-Shan Zhang, H. Hamabe, J. Maeda
{"title":"脑磁共振双通道图像分割的混合方法","authors":"Shan-Shan Zhang, H. Hamabe, J. Maeda","doi":"10.1109/ICOSP.1998.770772","DOIUrl":null,"url":null,"abstract":"A hybrid approach is presented in this paper to segmenting the brain matter, as assessed by magnetic resonance (MR) imaging, into three major tissue classes of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). First, a fuzzy clustering algorithm is used to divide the original T1 and T2 weighted MR images into groups with similar intensity distributions. Then a multiple level reasoning method is adopted to label the pixels of the cerebral MR image into one of the three of the tissue classes. Finally, the symmetric index is calculated for these tissue classes to show the possible abnormalities in the brain tissues.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid approach to segmentation of two channels cerebral MR images\",\"authors\":\"Shan-Shan Zhang, H. Hamabe, J. Maeda\",\"doi\":\"10.1109/ICOSP.1998.770772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid approach is presented in this paper to segmenting the brain matter, as assessed by magnetic resonance (MR) imaging, into three major tissue classes of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). First, a fuzzy clustering algorithm is used to divide the original T1 and T2 weighted MR images into groups with similar intensity distributions. Then a multiple level reasoning method is adopted to label the pixels of the cerebral MR image into one of the three of the tissue classes. Finally, the symmetric index is calculated for these tissue classes to show the possible abnormalities in the brain tissues.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种混合方法来分割脑物质,通过磁共振(MR)成像评估,分为灰质(GM),白质(WM)和脑脊液(CSF)三个主要组织类别。首先,采用模糊聚类算法将原始T1和T2加权MR图像分成强度分布相似的组;然后采用多层推理方法将脑磁共振图像像素点标记为三种组织类别之一。最后,计算这些组织类别的对称指数,以显示脑组织中可能出现的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid approach to segmentation of two channels cerebral MR images
A hybrid approach is presented in this paper to segmenting the brain matter, as assessed by magnetic resonance (MR) imaging, into three major tissue classes of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). First, a fuzzy clustering algorithm is used to divide the original T1 and T2 weighted MR images into groups with similar intensity distributions. Then a multiple level reasoning method is adopted to label the pixels of the cerebral MR image into one of the three of the tissue classes. Finally, the symmetric index is calculated for these tissue classes to show the possible abnormalities in the brain tissues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new estimation formula for minimum filter length of optimum FIR digital filters A fuzzy associative memory pattern classifier Randomized method for planar motion estimation and matching points A robust speech feature-perceptive scalogram based on wavelet analysis A new class of feature-orientated motion estimation for motion pictures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1