控制输入饱和的自主水下航行器神经网络强化学习控制

Rongxin Cui, Chenguang Yang, Y. Li, Sanjay K. Sharma
{"title":"控制输入饱和的自主水下航行器神经网络强化学习控制","authors":"Rongxin Cui, Chenguang Yang, Y. Li, Sanjay K. Sharma","doi":"10.1109/CONTROL.2014.6915114","DOIUrl":null,"url":null,"abstract":"In this paper, the trajectory tracking control of the autonomous underwater vehicle (AUV) has been investigated in discrete time, for ease of digital computer calculation. A reinforcement learning scheme is employed using two neural networks, whereas the first one is to compensate for uncertainties for the controller, and the second one is to estimate the evaluation function, such that optimal tracking performance could be achieve for the AUV. Simulation results show that the errors convergence to a adjustable neighborhood around zero, and optimization has been achieved in the sense of reinforcement learning.","PeriodicalId":269044,"journal":{"name":"2014 UKACC International Conference on Control (CONTROL)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Neural network based reinforcement learning control of autonomous underwater vehicles with control input saturation\",\"authors\":\"Rongxin Cui, Chenguang Yang, Y. Li, Sanjay K. Sharma\",\"doi\":\"10.1109/CONTROL.2014.6915114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the trajectory tracking control of the autonomous underwater vehicle (AUV) has been investigated in discrete time, for ease of digital computer calculation. A reinforcement learning scheme is employed using two neural networks, whereas the first one is to compensate for uncertainties for the controller, and the second one is to estimate the evaluation function, such that optimal tracking performance could be achieve for the AUV. Simulation results show that the errors convergence to a adjustable neighborhood around zero, and optimization has been achieved in the sense of reinforcement learning.\",\"PeriodicalId\":269044,\"journal\":{\"name\":\"2014 UKACC International Conference on Control (CONTROL)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 UKACC International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONTROL.2014.6915114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 UKACC International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2014.6915114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

为了便于数字计算机计算,本文研究了自主水下航行器(AUV)的离散时间轨迹跟踪控制问题。采用两个神经网络的强化学习方案,第一个是对控制器的不确定性进行补偿,第二个是估计评估函数,使AUV的跟踪性能达到最优。仿真结果表明,误差收敛到零附近的可调邻域,实现了强化学习意义上的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network based reinforcement learning control of autonomous underwater vehicles with control input saturation
In this paper, the trajectory tracking control of the autonomous underwater vehicle (AUV) has been investigated in discrete time, for ease of digital computer calculation. A reinforcement learning scheme is employed using two neural networks, whereas the first one is to compensate for uncertainties for the controller, and the second one is to estimate the evaluation function, such that optimal tracking performance could be achieve for the AUV. Simulation results show that the errors convergence to a adjustable neighborhood around zero, and optimization has been achieved in the sense of reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensor configurations and testbed for vehicle state estimation Detection and isolation of actuator failure for actively controlled railway wheelsets Using clickers in lectures to help identify and teach the control topics students find difficult Feedback control for reducing the pressure drag of bluff bodies terminated by a backward-facing step Cooperative source seeking via gradient estimation and formation control (Part 1)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1