非局部意味着使用自适应核去噪

A. Tahmouresi, S. Saryazdi, S. Seydnejad
{"title":"非局部意味着使用自适应核去噪","authors":"A. Tahmouresi, S. Saryazdi, S. Seydnejad","doi":"10.1109/IRANIANCEE.2012.6292584","DOIUrl":null,"url":null,"abstract":"Non-local means algorithm is one of the powerful image denoising methods. Maintaining noise near edges and textural parts of a noisy image, is one of the main drawbacks of NLM. In this paper we introduce an adaptive kernel derived from image structure to remove maintained noise. Experimental results show superiority of our algorithm in comparison with original NLM as well as a method based on shape adaptive patches.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-local means denoising using an adaptive kernel\",\"authors\":\"A. Tahmouresi, S. Saryazdi, S. Seydnejad\",\"doi\":\"10.1109/IRANIANCEE.2012.6292584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-local means algorithm is one of the powerful image denoising methods. Maintaining noise near edges and textural parts of a noisy image, is one of the main drawbacks of NLM. In this paper we introduce an adaptive kernel derived from image structure to remove maintained noise. Experimental results show superiority of our algorithm in comparison with original NLM as well as a method based on shape adaptive patches.\",\"PeriodicalId\":308726,\"journal\":{\"name\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Iranian Conference on Electrical Engineering (ICEE2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2012.6292584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非局部均值算法是一种功能强大的图像去噪方法。在噪声图像的边缘和纹理部分附近保持噪声是NLM的主要缺点之一。本文引入了一种基于图像结构的自适应核函数,用于去除图像中的残留噪声。实验结果表明,该算法与原始NLM和基于形状自适应补丁的方法相比具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-local means denoising using an adaptive kernel
Non-local means algorithm is one of the powerful image denoising methods. Maintaining noise near edges and textural parts of a noisy image, is one of the main drawbacks of NLM. In this paper we introduce an adaptive kernel derived from image structure to remove maintained noise. Experimental results show superiority of our algorithm in comparison with original NLM as well as a method based on shape adaptive patches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrical analysis of altitude estimation error caused by pixel quantization in stereo vision Time-domain MoM for the scattering analysis of thin-wire structures within a ground using band-limited Second-Order Lagrange temporal basis functions Variable-structure position control-a class of fast and robust controllers for synchronous reluctance motor drives Analysis of corona effect on lightning performance of HV overhead transmission line using ATP/EMTP Font recognition using Variogram fractal dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1