对特定领域概念的分类法进行无监督的实时归纳和交互式可视化

M. Kejriwal, Ke Shen
{"title":"对特定领域概念的分类法进行无监督的实时归纳和交互式可视化","authors":"M. Kejriwal, Ke Shen","doi":"10.1145/3487351.3489481","DOIUrl":null,"url":null,"abstract":"Given a domain-specific set of concept labels, taxonomy induction is the problem of inducing a taxonomy over the concept labels. Despite its importance in problems such as e-commerce, and some algorithmic research as a consequence, practical tools for taxonomy induction and interactive visualization do not currently exist. To be truly useful, such a tool must permit a reasonable solution in a relatively unsupervised setting, and be applicable to general subsets of concept labels. In this paper, we present an unsupervised, end-to-end taxonomy induction system for arbitrary concept-labels from the e-commerce domain. Our system only takes a simple text file as input and yields a tree-like taxonomy that can be rendered on a browser, and that a non-technical user can interact with. Important components of the system can also be customized by a technically experienced user.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised real-time induction and interactive visualization of taxonomies over domain-specific concepts\",\"authors\":\"M. Kejriwal, Ke Shen\",\"doi\":\"10.1145/3487351.3489481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a domain-specific set of concept labels, taxonomy induction is the problem of inducing a taxonomy over the concept labels. Despite its importance in problems such as e-commerce, and some algorithmic research as a consequence, practical tools for taxonomy induction and interactive visualization do not currently exist. To be truly useful, such a tool must permit a reasonable solution in a relatively unsupervised setting, and be applicable to general subsets of concept labels. In this paper, we present an unsupervised, end-to-end taxonomy induction system for arbitrary concept-labels from the e-commerce domain. Our system only takes a simple text file as input and yields a tree-like taxonomy that can be rendered on a browser, and that a non-technical user can interact with. Important components of the system can also be customized by a technically experienced user.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3489481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3489481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定特定于领域的概念标签集,分类法归纳是在概念标签上归纳分类法的问题。尽管它在电子商务等问题以及一些算法研究中很重要,但目前还没有用于分类归纳和交互式可视化的实用工具。要真正有用,这样的工具必须允许在相对无监督的设置中提供合理的解决方案,并且适用于概念标签的一般子集。本文提出了一种针对电子商务领域中任意概念标签的无监督端到端分类归纳系统。我们的系统只接受一个简单的文本文件作为输入,并产生一个可以在浏览器上呈现的树状分类法,非技术用户可以与之交互。系统的重要组件也可以由技术经验丰富的用户定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised real-time induction and interactive visualization of taxonomies over domain-specific concepts
Given a domain-specific set of concept labels, taxonomy induction is the problem of inducing a taxonomy over the concept labels. Despite its importance in problems such as e-commerce, and some algorithmic research as a consequence, practical tools for taxonomy induction and interactive visualization do not currently exist. To be truly useful, such a tool must permit a reasonable solution in a relatively unsupervised setting, and be applicable to general subsets of concept labels. In this paper, we present an unsupervised, end-to-end taxonomy induction system for arbitrary concept-labels from the e-commerce domain. Our system only takes a simple text file as input and yields a tree-like taxonomy that can be rendered on a browser, and that a non-technical user can interact with. Important components of the system can also be customized by a technically experienced user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1