一个gpu友好的Skiplist算法

Nurit Moscovici, Nachshon Cohen, E. Petrank
{"title":"一个gpu友好的Skiplist算法","authors":"Nurit Moscovici, Nachshon Cohen, E. Petrank","doi":"10.1145/3018743.3019032","DOIUrl":null,"url":null,"abstract":"We propose a design for a fine-grained lock-based skiplist optimized for Graphics Processing Units (GPUs). While GPUs are often used to accelerate streaming parallel computations, it remains a significant challenge to efficiently offload concurrent computations with more complicated data-irregular access and fine-grained synchronization. Natural building blocks for such computations would be concurrent data structures, such as skiplists, which are widely used in general purpose computations. Our design utilizes array-based nodes which are accessed and updated by warp-cooperative functions, thus taking advantage of the fact that GPUs are most efficient when memory accesses are coalesced and execution divergence is minimized. The proposed design has been implemented, and measurements demonstrate improved performance of up to 11.6x over skiplist designs for the GPU existing today.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A GPU-Friendly Skiplist Algorithm\",\"authors\":\"Nurit Moscovici, Nachshon Cohen, E. Petrank\",\"doi\":\"10.1145/3018743.3019032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a design for a fine-grained lock-based skiplist optimized for Graphics Processing Units (GPUs). While GPUs are often used to accelerate streaming parallel computations, it remains a significant challenge to efficiently offload concurrent computations with more complicated data-irregular access and fine-grained synchronization. Natural building blocks for such computations would be concurrent data structures, such as skiplists, which are widely used in general purpose computations. Our design utilizes array-based nodes which are accessed and updated by warp-cooperative functions, thus taking advantage of the fact that GPUs are most efficient when memory accesses are coalesced and execution divergence is minimized. The proposed design has been implemented, and measurements demonstrate improved performance of up to 11.6x over skiplist designs for the GPU existing today.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018743.3019032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018743.3019032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了一种针对图形处理单元(gpu)优化的基于锁的细粒度跳过列表设计。虽然gpu经常用于加速流并行计算,但如何有效地卸载具有更复杂数据(不规则访问和细粒度同步)的并发计算仍然是一个重大挑战。这种计算的自然构建块将是并发数据结构,例如在通用计算中广泛使用的skiplist。我们的设计利用基于数组的节点,通过warp-cooperative函数访问和更新,从而利用gpu在内存访问合并和执行分歧最小化时效率最高的事实。提议的设计已经实施,测量表明,与目前现有的GPU跳过列表设计相比,性能提高了11.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A GPU-Friendly Skiplist Algorithm
We propose a design for a fine-grained lock-based skiplist optimized for Graphics Processing Units (GPUs). While GPUs are often used to accelerate streaming parallel computations, it remains a significant challenge to efficiently offload concurrent computations with more complicated data-irregular access and fine-grained synchronization. Natural building blocks for such computations would be concurrent data structures, such as skiplists, which are widely used in general purpose computations. Our design utilizes array-based nodes which are accessed and updated by warp-cooperative functions, thus taking advantage of the fact that GPUs are most efficient when memory accesses are coalesced and execution divergence is minimized. The proposed design has been implemented, and measurements demonstrate improved performance of up to 11.6x over skiplist designs for the GPU existing today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1