基于Agent的3区继电器监督防止隐性故障跳闸

S. Garlapati, Hua Lin, S. Sambamoorthy, S. Shukla, J. Thorp
{"title":"基于Agent的3区继电器监督防止隐性故障跳闸","authors":"S. Garlapati, Hua Lin, S. Sambamoorthy, S. Shukla, J. Thorp","doi":"10.1109/SMARTGRID.2010.5622051","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a distributed agent based supervisory scheme to make Zone 3 relays robust to hidden failure induced tripping, facilitated by the communication network -- soon to become an integral parts of the smart grid. Possible elimination of Zone 3 relays (remote backup protection) has been studied in the recent past and these remote backup relays have been adjudged to be essential for power system protection [23]. Even though Zone 3 relays are often overly sensitive to remote line overloading, and are known to cause unwarranted trips during cascading failure scenarios, they are prescribed as acceptable means for remote backup. Therefore, providing robustness to Zone 3 relays to minimize the risk of erroneous trips, especially when hidden failures [10, 1] make them vulnerable to over reaction, is an important problem. In our scheme, a synchronous grid is populated with agents at each relay, and an agent hierarchy is maintained in master/slave relationship. The communication established between relay agents decreases the probability of erroneous Zone 3 trips thereby preventing them from aggravating cascading failure scenarios, and reducing the probability of cascading blackouts. Unlike other agent based relay proposals, ours is a nonintrusive approach.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"12 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Agent Based Supervision of Zone 3 Relays to Prevent Hidden Failure Based Tripping\",\"authors\":\"S. Garlapati, Hua Lin, S. Sambamoorthy, S. Shukla, J. Thorp\",\"doi\":\"10.1109/SMARTGRID.2010.5622051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a distributed agent based supervisory scheme to make Zone 3 relays robust to hidden failure induced tripping, facilitated by the communication network -- soon to become an integral parts of the smart grid. Possible elimination of Zone 3 relays (remote backup protection) has been studied in the recent past and these remote backup relays have been adjudged to be essential for power system protection [23]. Even though Zone 3 relays are often overly sensitive to remote line overloading, and are known to cause unwarranted trips during cascading failure scenarios, they are prescribed as acceptable means for remote backup. Therefore, providing robustness to Zone 3 relays to minimize the risk of erroneous trips, especially when hidden failures [10, 1] make them vulnerable to over reaction, is an important problem. In our scheme, a synchronous grid is populated with agents at each relay, and an agent hierarchy is maintained in master/slave relationship. The communication established between relay agents decreases the probability of erroneous Zone 3 trips thereby preventing them from aggravating cascading failure scenarios, and reducing the probability of cascading blackouts. Unlike other agent based relay proposals, ours is a nonintrusive approach.\",\"PeriodicalId\":106908,\"journal\":{\"name\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"volume\":\"12 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTGRID.2010.5622051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在本文中,我们提出了一种基于分布式代理的监控方案,以使3区继电器对隐藏故障引起的跳闸具有鲁棒性,并在通信网络的支持下,很快将成为智能电网的组成部分。在最近的一段时间里,人们已经研究了消除3区继电器(远程备份保护)的可能性,并认为这些远程备份继电器对电力系统保护[23]是必不可少的。尽管3区继电器通常对远程线路过载过于敏感,并且已知在级联故障场景中会导致不必要的跳闸,但它们被规定为远程备份的可接受手段。因此,为3区继电器提供鲁棒性以最小化错误跳闸的风险是一个重要的问题,特别是当隐藏故障[10,1]使它们容易产生过度反应时。在我们的方案中,在每个中继上都用代理填充一个同步网格,并且在主/从关系中维护代理层次结构。继电代理之间建立的通信降低了3区误跳的概率,从而防止了3区误跳加剧级联故障场景,降低了级联停电的概率。与其他基于代理的中继建议不同,我们的方法是非侵入式的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agent Based Supervision of Zone 3 Relays to Prevent Hidden Failure Based Tripping
In this paper, we propose a distributed agent based supervisory scheme to make Zone 3 relays robust to hidden failure induced tripping, facilitated by the communication network -- soon to become an integral parts of the smart grid. Possible elimination of Zone 3 relays (remote backup protection) has been studied in the recent past and these remote backup relays have been adjudged to be essential for power system protection [23]. Even though Zone 3 relays are often overly sensitive to remote line overloading, and are known to cause unwarranted trips during cascading failure scenarios, they are prescribed as acceptable means for remote backup. Therefore, providing robustness to Zone 3 relays to minimize the risk of erroneous trips, especially when hidden failures [10, 1] make them vulnerable to over reaction, is an important problem. In our scheme, a synchronous grid is populated with agents at each relay, and an agent hierarchy is maintained in master/slave relationship. The communication established between relay agents decreases the probability of erroneous Zone 3 trips thereby preventing them from aggravating cascading failure scenarios, and reducing the probability of cascading blackouts. Unlike other agent based relay proposals, ours is a nonintrusive approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectrum for Smart Grid: Policy Recommendations Enabling Current and Future Applications Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures Quality of Service Networking for Smart Grid Distribution Monitoring The POWER of Networking: How Networking Can Help Power Management Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1