A. Yablokov, O. A. Bogoslovskaya, I. P. Olkhovskaya, N. N. Glushchenko
{"title":"金属纳米颗粒在春大麦种子播前处理中的应用","authors":"A. Yablokov, O. A. Bogoslovskaya, I. P. Olkhovskaya, N. N. Glushchenko","doi":"10.21475/ajcs.20.14.07.p2366","DOIUrl":null,"url":null,"abstract":"This paper presents data on the pre-sowing treatment of spring barley (Hordeum vulgare L.) seeds by polymer coating with metal nanoparticles (NPs) affecting on seed germination and morphometric parameters of seedlings. Metal NPs [Fe (56.0 ± 0.9 nm, phase composition: Fe0 -27.9 ± 2.1%, Fe3O4 - 72.1 ± 3.6%); Zn (60.6 ± 3.7 nm, phase composition: Zn0 - 100%); Cu (65.0 ± 1.2 nm, phase composition: Cu0 - 100%)] were incorporated into a polymer coating about 10 microns thick, consisting of Na-carboxymethyl cellulose (Na-CMC) and polyethylene glycol-400 (PEG-400), with a dye rhodamine 6G (Rh6G). We developed and studied polymer compositions as with individual NPs in concentrations 10-4% - 10-10% and their combinations. To compare effects of NPs with metal ions, we tested polymer film coating with metal sulfates in equivalent amounts. Pre-sowing treatment of barley seeds with metal NPs or metal ions in the polymer coating affected germination, fresh green and root mass (FM and RM) of seedlings. Film thickness was less than 10% of the caryopsis shell. The surface of seeds treated with the polymer composition was uniform. The defects and irregularities were smoothed. There were no significant differences in the endosperm structure on sections of the treated and control samples. Iron, zinc and copper NPs composition at 10-8%, 10-4% and 10-8% concentrations were the best in laboratory experiments. In the field trials, it stimulated barley crop yields and decreased the moisture content of the bunker grain compared with the control.","PeriodicalId":292935,"journal":{"name":"JULY 2020","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of metal nanoparticles for pre-sowing treatment of spring barley seeds\",\"authors\":\"A. Yablokov, O. A. Bogoslovskaya, I. P. Olkhovskaya, N. N. Glushchenko\",\"doi\":\"10.21475/ajcs.20.14.07.p2366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents data on the pre-sowing treatment of spring barley (Hordeum vulgare L.) seeds by polymer coating with metal nanoparticles (NPs) affecting on seed germination and morphometric parameters of seedlings. Metal NPs [Fe (56.0 ± 0.9 nm, phase composition: Fe0 -27.9 ± 2.1%, Fe3O4 - 72.1 ± 3.6%); Zn (60.6 ± 3.7 nm, phase composition: Zn0 - 100%); Cu (65.0 ± 1.2 nm, phase composition: Cu0 - 100%)] were incorporated into a polymer coating about 10 microns thick, consisting of Na-carboxymethyl cellulose (Na-CMC) and polyethylene glycol-400 (PEG-400), with a dye rhodamine 6G (Rh6G). We developed and studied polymer compositions as with individual NPs in concentrations 10-4% - 10-10% and their combinations. To compare effects of NPs with metal ions, we tested polymer film coating with metal sulfates in equivalent amounts. Pre-sowing treatment of barley seeds with metal NPs or metal ions in the polymer coating affected germination, fresh green and root mass (FM and RM) of seedlings. Film thickness was less than 10% of the caryopsis shell. The surface of seeds treated with the polymer composition was uniform. The defects and irregularities were smoothed. There were no significant differences in the endosperm structure on sections of the treated and control samples. Iron, zinc and copper NPs composition at 10-8%, 10-4% and 10-8% concentrations were the best in laboratory experiments. In the field trials, it stimulated barley crop yields and decreased the moisture content of the bunker grain compared with the control.\",\"PeriodicalId\":292935,\"journal\":{\"name\":\"JULY 2020\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JULY 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/ajcs.20.14.07.p2366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JULY 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/ajcs.20.14.07.p2366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of metal nanoparticles for pre-sowing treatment of spring barley seeds
This paper presents data on the pre-sowing treatment of spring barley (Hordeum vulgare L.) seeds by polymer coating with metal nanoparticles (NPs) affecting on seed germination and morphometric parameters of seedlings. Metal NPs [Fe (56.0 ± 0.9 nm, phase composition: Fe0 -27.9 ± 2.1%, Fe3O4 - 72.1 ± 3.6%); Zn (60.6 ± 3.7 nm, phase composition: Zn0 - 100%); Cu (65.0 ± 1.2 nm, phase composition: Cu0 - 100%)] were incorporated into a polymer coating about 10 microns thick, consisting of Na-carboxymethyl cellulose (Na-CMC) and polyethylene glycol-400 (PEG-400), with a dye rhodamine 6G (Rh6G). We developed and studied polymer compositions as with individual NPs in concentrations 10-4% - 10-10% and their combinations. To compare effects of NPs with metal ions, we tested polymer film coating with metal sulfates in equivalent amounts. Pre-sowing treatment of barley seeds with metal NPs or metal ions in the polymer coating affected germination, fresh green and root mass (FM and RM) of seedlings. Film thickness was less than 10% of the caryopsis shell. The surface of seeds treated with the polymer composition was uniform. The defects and irregularities were smoothed. There were no significant differences in the endosperm structure on sections of the treated and control samples. Iron, zinc and copper NPs composition at 10-8%, 10-4% and 10-8% concentrations were the best in laboratory experiments. In the field trials, it stimulated barley crop yields and decreased the moisture content of the bunker grain compared with the control.