人体模型的语义参数重构

Yipin Yang, Yao Yu, Yu Zhou, S. Du, James Davis, Ruigang Yang
{"title":"人体模型的语义参数重构","authors":"Yipin Yang, Yao Yu, Yu Zhou, S. Du, James Davis, Ruigang Yang","doi":"10.1109/3DV.2014.47","DOIUrl":null,"url":null,"abstract":"We develop a novel approach to generate human body models in a variety of shapes and poses via tuning semantic parameters. Our approach is investigated with datasets of up to 3000 scanned body models which have been placed in point to point correspondence. Correspondence is established by nonrigid deformation of a template mesh. The large dataset allows a local model to be learned robustly, in which individual parts of the human body can be accurately reshaped according to semantic parameters. We evaluate performance on two datasets and find that our model outperforms existing methods.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"Semantic Parametric Reshaping of Human Body Models\",\"authors\":\"Yipin Yang, Yao Yu, Yu Zhou, S. Du, James Davis, Ruigang Yang\",\"doi\":\"10.1109/3DV.2014.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a novel approach to generate human body models in a variety of shapes and poses via tuning semantic parameters. Our approach is investigated with datasets of up to 3000 scanned body models which have been placed in point to point correspondence. Correspondence is established by nonrigid deformation of a template mesh. The large dataset allows a local model to be learned robustly, in which individual parts of the human body can be accurately reshaped according to semantic parameters. We evaluate performance on two datasets and find that our model outperforms existing methods.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

我们开发了一种通过调整语义参数来生成各种形状和姿势的人体模型的新方法。我们的方法研究了多达3000个扫描身体模型的数据集,这些模型已经被放置在点对点对应中。通过模板网格的非刚性变形建立对应关系。大数据集允许鲁棒学习局部模型,其中人体的各个部位可以根据语义参数精确地重塑。我们在两个数据集上评估了性能,发现我们的模型优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Parametric Reshaping of Human Body Models
We develop a novel approach to generate human body models in a variety of shapes and poses via tuning semantic parameters. Our approach is investigated with datasets of up to 3000 scanned body models which have been placed in point to point correspondence. Correspondence is established by nonrigid deformation of a template mesh. The large dataset allows a local model to be learned robustly, in which individual parts of the human body can be accurately reshaped according to semantic parameters. We evaluate performance on two datasets and find that our model outperforms existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying 3D Mesh Sequences for Human Action Retrieval Temporal Octrees for Compressing Dynamic Point Cloud Streams High-Quality Depth Recovery via Interactive Multi-view Stereo Iterative Closest Spectral Kernel Maps Close-Range Photometric Stereo with Point Light Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1