基于NUFFT插值的圆形SAR的FFBP算法

Zhenyu Guo, Hongbo Zhang, Shaohua Ye
{"title":"基于NUFFT插值的圆形SAR的FFBP算法","authors":"Zhenyu Guo, Hongbo Zhang, Shaohua Ye","doi":"10.1109/APSAR46974.2019.9048561","DOIUrl":null,"url":null,"abstract":"Circular SAR is able to achieve omni-directional observation and high-resolution imaging of targets. However, the traditional frequency-domain based imaging algorithm is not suitable for complicated curve trajectory. Moreover the time domain based back-projection (BP) algorithm is applicable but time consuming. Fast factorized back-projection (FFBP) algorithm based on aperture decomposition and image fusion can balance computational efficiency and accuracy. In this paper, we proposed a modified FFBP algorithm for circular SAR imaging. The principal improvement is the usage of Cartesian coordinate imaging and nonuniform fast Fourier transform (NUFFT) interpolation. First, sub-aperture BP imaging is implemented on local Cartesian coordinate system. Then azimuth bandwidth is compressed with a spatial variant phase function to reduce the sampling rate. Next the NUFFT interpolation method is applied during sub-images fusion to further improve the efficiency of the algorithm. Finally, through simulation and real data experiments, the correctness and accuracy of the algorithm is verified.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cartesian based FFBP algorithm for circular SAR using NUFFT interpolation\",\"authors\":\"Zhenyu Guo, Hongbo Zhang, Shaohua Ye\",\"doi\":\"10.1109/APSAR46974.2019.9048561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circular SAR is able to achieve omni-directional observation and high-resolution imaging of targets. However, the traditional frequency-domain based imaging algorithm is not suitable for complicated curve trajectory. Moreover the time domain based back-projection (BP) algorithm is applicable but time consuming. Fast factorized back-projection (FFBP) algorithm based on aperture decomposition and image fusion can balance computational efficiency and accuracy. In this paper, we proposed a modified FFBP algorithm for circular SAR imaging. The principal improvement is the usage of Cartesian coordinate imaging and nonuniform fast Fourier transform (NUFFT) interpolation. First, sub-aperture BP imaging is implemented on local Cartesian coordinate system. Then azimuth bandwidth is compressed with a spatial variant phase function to reduce the sampling rate. Next the NUFFT interpolation method is applied during sub-images fusion to further improve the efficiency of the algorithm. Finally, through simulation and real data experiments, the correctness and accuracy of the algorithm is verified.\",\"PeriodicalId\":377019,\"journal\":{\"name\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR46974.2019.9048561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

圆形SAR能够实现对目标的全方位观测和高分辨率成像。然而,传统的基于频域的成像算法并不适用于复杂的曲线轨迹。此外,基于时域的反投影(BP)算法适用,但耗时较长。基于孔径分解和图像融合的快速分解反投影(FFBP)算法可以平衡计算效率和精度。本文提出了一种改进的FFBP算法用于圆形SAR成像。主要的改进是使用了笛卡尔坐标成像和非均匀快速傅里叶变换(NUFFT)插值。首先,在局部笛卡尔坐标系下实现子孔径BP成像;然后用空间变相位函数压缩方位角带宽,降低采样率。然后在子图像融合过程中应用NUFFT插值方法,进一步提高算法的效率。最后,通过仿真和实际数据实验,验证了算法的正确性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cartesian based FFBP algorithm for circular SAR using NUFFT interpolation
Circular SAR is able to achieve omni-directional observation and high-resolution imaging of targets. However, the traditional frequency-domain based imaging algorithm is not suitable for complicated curve trajectory. Moreover the time domain based back-projection (BP) algorithm is applicable but time consuming. Fast factorized back-projection (FFBP) algorithm based on aperture decomposition and image fusion can balance computational efficiency and accuracy. In this paper, we proposed a modified FFBP algorithm for circular SAR imaging. The principal improvement is the usage of Cartesian coordinate imaging and nonuniform fast Fourier transform (NUFFT) interpolation. First, sub-aperture BP imaging is implemented on local Cartesian coordinate system. Then azimuth bandwidth is compressed with a spatial variant phase function to reduce the sampling rate. Next the NUFFT interpolation method is applied during sub-images fusion to further improve the efficiency of the algorithm. Finally, through simulation and real data experiments, the correctness and accuracy of the algorithm is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation Analysis of Missile-borne SAR System Dual-Frequency Interferometric Performance Simulation of UAV Dupa-SAR Influence of Elevation and Orbit Interpolation on the Accuracy of R-D Location Model Approximation for the Statistics of the Optimal Polarimetric Detector in K-Wishart model An Approach for Spaceborne InSAR DEM Inversion Integrated with Stereo-SAR Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1