自然计算:面对冲突视觉线索的决策以及果蝇嗅觉和视觉学习之间的跨模态相互作用

A. Guo
{"title":"自然计算:面对冲突视觉线索的决策以及果蝇嗅觉和视觉学习之间的跨模态相互作用","authors":"A. Guo","doi":"10.1109/ICNNB.2005.1614538","DOIUrl":null,"url":null,"abstract":"Drosophila flies can be trained in the flight simulator to operantly avoid heat by choosing certain flight orientations relative to landmarks. Flies primarily store pattern orientations associated with the absence of heat. They readily escape from heat-associated orientations under the direct influence of the reinforcer but not in the subsequent memory tests. This paper shows that Drosophila flies could be used as a new model organism for the neurobiology of cognition-like behavior","PeriodicalId":145719,"journal":{"name":"2005 International Conference on Neural Networks and Brain","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Computation: Decision-Making Facing Conflicting Visual Cues And Crossmodal Interaction Between Olfactory And Visual Learning In Drosophila\",\"authors\":\"A. Guo\",\"doi\":\"10.1109/ICNNB.2005.1614538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drosophila flies can be trained in the flight simulator to operantly avoid heat by choosing certain flight orientations relative to landmarks. Flies primarily store pattern orientations associated with the absence of heat. They readily escape from heat-associated orientations under the direct influence of the reinforcer but not in the subsequent memory tests. This paper shows that Drosophila flies could be used as a new model organism for the neurobiology of cognition-like behavior\",\"PeriodicalId\":145719,\"journal\":{\"name\":\"2005 International Conference on Neural Networks and Brain\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Neural Networks and Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNB.2005.1614538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Neural Networks and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNB.2005.1614538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

果蝇可以在飞行模拟器中训练,通过选择相对于地标的特定飞行方向来避开热量。苍蝇主要储存与缺乏热量有关的模式方向。在强化物的直接影响下,他们很容易从与热相关的方向中逃脱,但在随后的记忆测试中却没有。这表明果蝇可以作为类认知行为神经生物学研究的新模式生物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural Computation: Decision-Making Facing Conflicting Visual Cues And Crossmodal Interaction Between Olfactory And Visual Learning In Drosophila
Drosophila flies can be trained in the flight simulator to operantly avoid heat by choosing certain flight orientations relative to landmarks. Flies primarily store pattern orientations associated with the absence of heat. They readily escape from heat-associated orientations under the direct influence of the reinforcer but not in the subsequent memory tests. This paper shows that Drosophila flies could be used as a new model organism for the neurobiology of cognition-like behavior
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Levenberg-Marquardt method to the training of spiking neural networks Design and Realization of a Meaningful Digital Watermarking Algorithm Based on RBF Neural Network* Multiscale Feature Extraction of Finger-Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network Connecting Brains and Robots by Computational Theories Finding Hidden Factors in Large Spatiotemporal Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1