一种用于眼部疾病分类的高效深度学习模型

Archana Saini, Kalpna Guleria, Shagun Sharma
{"title":"一种用于眼部疾病分类的高效深度学习模型","authors":"Archana Saini, Kalpna Guleria, Shagun Sharma","doi":"10.1109/SCSE59836.2023.10215000","DOIUrl":null,"url":null,"abstract":"Early detection of eye diseases is crucial, particularly for individuals with a family history of eye diseases, people over 60 years of age, individuals with diabetes, and those who have a history of eye injuries or surgeries, as they are at a higher risk of developing eye diseases. Early detection and timely treatment are crucial in treating eye diseases and preventing permanent vision loss. Detecting eye diseases early on is crucial in preventing or slowing down the progression of vision loss and blindness. Unfortunately, many eye diseases, including diabetic retinopathy, glaucoma, and cataracts, do not have early warning signs or symptoms. Therefore, regular eye checkups and early detection of these diseases can be essential in preventing vision loss and improving the quality of life for those affected. Retinal fundus image screening is a commonly used technique for diagnosing eye disorders, but manual detection is time-consuming and labour-intensive. To address this issue, various researchers have turned to deep learning methods for the automated detection of retinal eye diseases. In this work, a convolutional neural network model has been developed for classifying eye diseases, demonstrating an impressive accuracy rate of 99.85%. This suggests that the model can correctly classify eye diseases in nearly 4 out of 5 cases. These findings have the potential to significantly improve the accuracy and efficiency of diagnosing eye diseases using retinal fundus images.","PeriodicalId":429228,"journal":{"name":"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Deep Learning Model for Eye Disease Classification\",\"authors\":\"Archana Saini, Kalpna Guleria, Shagun Sharma\",\"doi\":\"10.1109/SCSE59836.2023.10215000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection of eye diseases is crucial, particularly for individuals with a family history of eye diseases, people over 60 years of age, individuals with diabetes, and those who have a history of eye injuries or surgeries, as they are at a higher risk of developing eye diseases. Early detection and timely treatment are crucial in treating eye diseases and preventing permanent vision loss. Detecting eye diseases early on is crucial in preventing or slowing down the progression of vision loss and blindness. Unfortunately, many eye diseases, including diabetic retinopathy, glaucoma, and cataracts, do not have early warning signs or symptoms. Therefore, regular eye checkups and early detection of these diseases can be essential in preventing vision loss and improving the quality of life for those affected. Retinal fundus image screening is a commonly used technique for diagnosing eye disorders, but manual detection is time-consuming and labour-intensive. To address this issue, various researchers have turned to deep learning methods for the automated detection of retinal eye diseases. In this work, a convolutional neural network model has been developed for classifying eye diseases, demonstrating an impressive accuracy rate of 99.85%. This suggests that the model can correctly classify eye diseases in nearly 4 out of 5 cases. These findings have the potential to significantly improve the accuracy and efficiency of diagnosing eye diseases using retinal fundus images.\",\"PeriodicalId\":429228,\"journal\":{\"name\":\"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCSE59836.2023.10215000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Research Conference on Smart Computing and Systems Engineering (SCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCSE59836.2023.10215000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

早期发现眼病至关重要,特别是对于有眼病家族史的人、60岁以上的人、糖尿病患者以及有眼部损伤或手术史的人,因为他们患眼病的风险更高。早期发现和及时治疗对于治疗眼病和预防永久性视力丧失至关重要。早期发现眼部疾病对于预防或减缓视力丧失和失明的进展至关重要。不幸的是,许多眼病,包括糖尿病视网膜病变、青光眼和白内障,都没有早期的预警信号或症状。因此,定期眼科检查和早期发现这些疾病对于预防视力丧失和改善受影响者的生活质量至关重要。视网膜眼底图像筛查是一种常用的眼科疾病诊断技术,但人工检测费时费力。为了解决这个问题,各种研究人员已经转向深度学习方法来自动检测视网膜眼病。在这项工作中,我们开发了一个卷积神经网络模型来对眼病进行分类,其准确率达到了令人印象深刻的99.85%。这表明该模型可以在近4 / 5的病例中正确分类眼病。这些发现有可能显著提高使用视网膜眼底图像诊断眼病的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Deep Learning Model for Eye Disease Classification
Early detection of eye diseases is crucial, particularly for individuals with a family history of eye diseases, people over 60 years of age, individuals with diabetes, and those who have a history of eye injuries or surgeries, as they are at a higher risk of developing eye diseases. Early detection and timely treatment are crucial in treating eye diseases and preventing permanent vision loss. Detecting eye diseases early on is crucial in preventing or slowing down the progression of vision loss and blindness. Unfortunately, many eye diseases, including diabetic retinopathy, glaucoma, and cataracts, do not have early warning signs or symptoms. Therefore, regular eye checkups and early detection of these diseases can be essential in preventing vision loss and improving the quality of life for those affected. Retinal fundus image screening is a commonly used technique for diagnosing eye disorders, but manual detection is time-consuming and labour-intensive. To address this issue, various researchers have turned to deep learning methods for the automated detection of retinal eye diseases. In this work, a convolutional neural network model has been developed for classifying eye diseases, demonstrating an impressive accuracy rate of 99.85%. This suggests that the model can correctly classify eye diseases in nearly 4 out of 5 cases. These findings have the potential to significantly improve the accuracy and efficiency of diagnosing eye diseases using retinal fundus images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Music Similarity through Siamese CNNs using Triplet Loss on Music Samples Impacts of Integrated Railway-Based Containerized Cargo Transport Network to Connect the Port of Colombo and Free Trade Zones in Sri Lanka Investigating Factors Influencing Behavioral Intention Toward Green Computing Practices Among Undergraduates In Sri Lankan Universities Preserving India’s Rich Dance Heritage: A Classification of Indian Dance Forms and Innovative Digital Management Solutions for Cultural Heritage Conservation An Automatic Density Cluster Generation Method to Identify the Amount of Tool Flank Wear via Tool Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1