{"title":"拉管道:一种用于收缩管道电路的技术","authors":"O. Cadenas, G. Megson","doi":"10.1109/IWSOC.2003.1213036","DOIUrl":null,"url":null,"abstract":"Pullpipelining, a pipeline technique where data is pulled from successor stages from predecessor stages is proposed. Control circuits using a synchronous, a semisynchronous and an asynchronous approach are given. Simulation examples for a DLX generic RISC datapath show that common control pipeline circuit overhead is avoided using the proposal. Applications to linear systolic arrays in cases when computation is finished at early stages in the array are foreseen. This would allow run-time data-driven digital frequency modulation of synchronous pipelined designs. This has applications to implement algorithms exhibiting average-case processing time using a synchronous approach.","PeriodicalId":259178,"journal":{"name":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullpipelining: a technique for systolic pipelined circuits\",\"authors\":\"O. Cadenas, G. Megson\",\"doi\":\"10.1109/IWSOC.2003.1213036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pullpipelining, a pipeline technique where data is pulled from successor stages from predecessor stages is proposed. Control circuits using a synchronous, a semisynchronous and an asynchronous approach are given. Simulation examples for a DLX generic RISC datapath show that common control pipeline circuit overhead is avoided using the proposal. Applications to linear systolic arrays in cases when computation is finished at early stages in the array are foreseen. This would allow run-time data-driven digital frequency modulation of synchronous pipelined designs. This has applications to implement algorithms exhibiting average-case processing time using a synchronous approach.\",\"PeriodicalId\":259178,\"journal\":{\"name\":\"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSOC.2003.1213036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2003.1213036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pullpipelining: a technique for systolic pipelined circuits
Pullpipelining, a pipeline technique where data is pulled from successor stages from predecessor stages is proposed. Control circuits using a synchronous, a semisynchronous and an asynchronous approach are given. Simulation examples for a DLX generic RISC datapath show that common control pipeline circuit overhead is avoided using the proposal. Applications to linear systolic arrays in cases when computation is finished at early stages in the array are foreseen. This would allow run-time data-driven digital frequency modulation of synchronous pipelined designs. This has applications to implement algorithms exhibiting average-case processing time using a synchronous approach.