{"title":"平衡态n型掺d硅带结构的温度相关性质研究","authors":"H. Ryu, Sunhee Lee, Gerhard Klimeck","doi":"10.1109/IWCE.2009.5091082","DOIUrl":null,"url":null,"abstract":"A highly phosphorus delta-doped Si device is modeled with a quantum well with periodic boundary conditions and the semi-empirical spds* tight-binding band model. Its temperature-dependent electronic properties are studied. To account for high doping density with many electrons, a highly parallelized self-consistent Schrodinger-Poisson solver is used with atomistic representations of multiple impurity ions. The band-structure in equilibrium and the corresponding Fermi-level position are computed for a selective set of temperatures. The result at room temperature is compared with previous studies and the temperature-dependent electronic properties are discussed further in detail with the calculated 3-D self-consistent potential profile.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Study of Temperature-dependent Properties of N-type d-doped Si Band-structures in Equilibrium\",\"authors\":\"H. Ryu, Sunhee Lee, Gerhard Klimeck\",\"doi\":\"10.1109/IWCE.2009.5091082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly phosphorus delta-doped Si device is modeled with a quantum well with periodic boundary conditions and the semi-empirical spds* tight-binding band model. Its temperature-dependent electronic properties are studied. To account for high doping density with many electrons, a highly parallelized self-consistent Schrodinger-Poisson solver is used with atomistic representations of multiple impurity ions. The band-structure in equilibrium and the corresponding Fermi-level position are computed for a selective set of temperatures. The result at room temperature is compared with previous studies and the temperature-dependent electronic properties are discussed further in detail with the calculated 3-D self-consistent potential profile.\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Temperature-dependent Properties of N-type d-doped Si Band-structures in Equilibrium
A highly phosphorus delta-doped Si device is modeled with a quantum well with periodic boundary conditions and the semi-empirical spds* tight-binding band model. Its temperature-dependent electronic properties are studied. To account for high doping density with many electrons, a highly parallelized self-consistent Schrodinger-Poisson solver is used with atomistic representations of multiple impurity ions. The band-structure in equilibrium and the corresponding Fermi-level position are computed for a selective set of temperatures. The result at room temperature is compared with previous studies and the temperature-dependent electronic properties are discussed further in detail with the calculated 3-D self-consistent potential profile.