Qi Shan, Changchang Wu, B. Curless, Yasutaka Furukawa, Carlos Hernández, S. Seitz
{"title":"地空图像匹配的精确地理配准","authors":"Qi Shan, Changchang Wu, B. Curless, Yasutaka Furukawa, Carlos Hernández, S. Seitz","doi":"10.1109/3DV.2014.69","DOIUrl":null,"url":null,"abstract":"We address the problem of geo-registering ground-based multi-view stereo models by ground-to-aerial image matching. The main contribution is a fully automated geo-registration pipeline with a novel viewpoint-dependent matching method that handles ground to aerial viewpoint variation. We conduct large-scale experiments which consist of many popular outdoor landmarks in Rome. The proposed approach demonstrates a high success rate for the task, and dramatically outperforms state-of-the-art techniques, yielding geo-registration at pixel-level accuracy.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Accurate Geo-Registration by Ground-to-Aerial Image Matching\",\"authors\":\"Qi Shan, Changchang Wu, B. Curless, Yasutaka Furukawa, Carlos Hernández, S. Seitz\",\"doi\":\"10.1109/3DV.2014.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of geo-registering ground-based multi-view stereo models by ground-to-aerial image matching. The main contribution is a fully automated geo-registration pipeline with a novel viewpoint-dependent matching method that handles ground to aerial viewpoint variation. We conduct large-scale experiments which consist of many popular outdoor landmarks in Rome. The proposed approach demonstrates a high success rate for the task, and dramatically outperforms state-of-the-art techniques, yielding geo-registration at pixel-level accuracy.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate Geo-Registration by Ground-to-Aerial Image Matching
We address the problem of geo-registering ground-based multi-view stereo models by ground-to-aerial image matching. The main contribution is a fully automated geo-registration pipeline with a novel viewpoint-dependent matching method that handles ground to aerial viewpoint variation. We conduct large-scale experiments which consist of many popular outdoor landmarks in Rome. The proposed approach demonstrates a high success rate for the task, and dramatically outperforms state-of-the-art techniques, yielding geo-registration at pixel-level accuracy.