一种混合局部PCA学习的自适应变换编码算法

Bai-ling Zhang, Q. Huang, Tom Gedeon
{"title":"一种混合局部PCA学习的自适应变换编码算法","authors":"Bai-ling Zhang, Q. Huang, Tom Gedeon","doi":"10.1109/ICONIP.1999.844647","DOIUrl":null,"url":null,"abstract":"Karhunen-Loeve transform (KLT) is the optimal linear transform for coding images under the assumption of stationarity. For images composed of regions with widely varied local statistics, R.D. Dony and S. Haykin (1995) proposed a transform coding method called optimally integrated adaptive learning (OIAL), in which a number of localized KLTs are adapted to regions with roughly the same statistics. The new transform coding method is shown to be superior to the traditional KLT. However, the performance of OIAL depends on an estimate of the global principal components of the data, which is not only computationally expensive bat also impractical in some cases. Another problem of OIAL is that the mean vector in each region is not taken into account, which is required to define a local PCA. The authors propose an improvement over the OIAL which replaces the winner-take-all (WTA) based clustering with an optimal soft-competition learning algorithm called \"neural gas\". The mean vector in each region is also incorporated. Experiments show a better performance than OIAL.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mixture of local PCA learning algorithm for adaptive transform coding\",\"authors\":\"Bai-ling Zhang, Q. Huang, Tom Gedeon\",\"doi\":\"10.1109/ICONIP.1999.844647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Karhunen-Loeve transform (KLT) is the optimal linear transform for coding images under the assumption of stationarity. For images composed of regions with widely varied local statistics, R.D. Dony and S. Haykin (1995) proposed a transform coding method called optimally integrated adaptive learning (OIAL), in which a number of localized KLTs are adapted to regions with roughly the same statistics. The new transform coding method is shown to be superior to the traditional KLT. However, the performance of OIAL depends on an estimate of the global principal components of the data, which is not only computationally expensive bat also impractical in some cases. Another problem of OIAL is that the mean vector in each region is not taken into account, which is required to define a local PCA. The authors propose an improvement over the OIAL which replaces the winner-take-all (WTA) based clustering with an optimal soft-competition learning algorithm called \\\"neural gas\\\". The mean vector in each region is also incorporated. Experiments show a better performance than OIAL.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.844647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Karhunen-Loeve变换(KLT)是在平稳假设下对图像进行编码的最优线性变换。对于由局部统计量差异很大的区域组成的图像,R.D. Dony和S. Haykin(1995)提出了一种称为最优集成自适应学习(OIAL)的变换编码方法,该方法将多个局部klt适应于具有大致相同统计量的区域。结果表明,该方法优于传统的KLT编码方法。然而,OIAL的性能取决于对数据的全局主成分的估计,这不仅在计算上昂贵,而且在某些情况下也不切实际。OIAL的另一个问题是没有考虑到每个区域的平均向量,这需要定义一个局部PCA。作者提出了一种改进的OIAL,用一种称为“神经气体”的最优软竞争学习算法取代了基于赢家通吃(WTA)的聚类。每个区域的平均向量也被合并。实验表明,该算法的性能优于OIAL算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mixture of local PCA learning algorithm for adaptive transform coding
Karhunen-Loeve transform (KLT) is the optimal linear transform for coding images under the assumption of stationarity. For images composed of regions with widely varied local statistics, R.D. Dony and S. Haykin (1995) proposed a transform coding method called optimally integrated adaptive learning (OIAL), in which a number of localized KLTs are adapted to regions with roughly the same statistics. The new transform coding method is shown to be superior to the traditional KLT. However, the performance of OIAL depends on an estimate of the global principal components of the data, which is not only computationally expensive bat also impractical in some cases. Another problem of OIAL is that the mean vector in each region is not taken into account, which is required to define a local PCA. The authors propose an improvement over the OIAL which replaces the winner-take-all (WTA) based clustering with an optimal soft-competition learning algorithm called "neural gas". The mean vector in each region is also incorporated. Experiments show a better performance than OIAL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1