基于cnn的塑料垃圾检测系统

Guezouli Larbi, Grourou Aya Aridj, Louchen Saher
{"title":"基于cnn的塑料垃圾检测系统","authors":"Guezouli Larbi, Grourou Aya Aridj, Louchen Saher","doi":"10.54646/bijscit.2023.27","DOIUrl":null,"url":null,"abstract":"Plastic waste has become a pressing global concern in recent decades, posing significant challenges to our environment due to its non-biodegradable nature and causing significant pollution and damage to our planet. Recycling plastic waste is one of the most effective solutions to this dilemma, which is why the aim of our project was to create a system that detects plastic waste using a large dataset with labeled data and one of the most famous deep learning neural networks, “Convolutional Neural Networks,” to classify and speed up the waste collection process and provide an easier recycling process. Thanks to our work, we have achieved 97% accuracy.","PeriodicalId":112029,"journal":{"name":"BOHR International Journal of Smart Computing and Information Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-based plastic waste detection system\",\"authors\":\"Guezouli Larbi, Grourou Aya Aridj, Louchen Saher\",\"doi\":\"10.54646/bijscit.2023.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic waste has become a pressing global concern in recent decades, posing significant challenges to our environment due to its non-biodegradable nature and causing significant pollution and damage to our planet. Recycling plastic waste is one of the most effective solutions to this dilemma, which is why the aim of our project was to create a system that detects plastic waste using a large dataset with labeled data and one of the most famous deep learning neural networks, “Convolutional Neural Networks,” to classify and speed up the waste collection process and provide an easier recycling process. Thanks to our work, we have achieved 97% accuracy.\",\"PeriodicalId\":112029,\"journal\":{\"name\":\"BOHR International Journal of Smart Computing and Information Technology\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BOHR International Journal of Smart Computing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54646/bijscit.2023.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Smart Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijscit.2023.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,塑料垃圾已成为一个紧迫的全球问题,由于其不可生物降解的性质,对我们的环境构成了重大挑战,对我们的地球造成了严重的污染和破坏。回收塑料垃圾是解决这一困境的最有效方法之一,这就是为什么我们项目的目标是创建一个系统,使用带有标记数据的大型数据集和最著名的深度学习神经网络之一“卷积神经网络”来检测塑料垃圾,以分类和加速废物收集过程,并提供更容易的回收过程。由于我们的工作,我们达到了97%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN-based plastic waste detection system
Plastic waste has become a pressing global concern in recent decades, posing significant challenges to our environment due to its non-biodegradable nature and causing significant pollution and damage to our planet. Recycling plastic waste is one of the most effective solutions to this dilemma, which is why the aim of our project was to create a system that detects plastic waste using a large dataset with labeled data and one of the most famous deep learning neural networks, “Convolutional Neural Networks,” to classify and speed up the waste collection process and provide an easier recycling process. Thanks to our work, we have achieved 97% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
National COVID-19 Health Contact Tracing and Monitoring System: A Sustainable Global and Namibian E-business and E-governance Context The Importance of ICTs on Service Delivery at MTC, Namibia The Design and Analysis of the Bra Fit on V-Stitcher 3D Software s Mobility of ICT Services in Namibian Institutions: A Literature Review The design, simulation, and adjustment of the Vietnam men’s Ao dai on the CLO3D software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1