Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li
{"title":"边缘协作网络的在线分散任务分配优化","authors":"Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li","doi":"10.1109/ISCC55528.2022.9912855","DOIUrl":null,"url":null,"abstract":"In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Decentralized Task Allocation Optimization for Edge Collaborative Networks\",\"authors\":\"Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li\",\"doi\":\"10.1109/ISCC55528.2022.9912855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Decentralized Task Allocation Optimization for Edge Collaborative Networks
In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.