边缘协作网络的在线分散任务分配优化

Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li
{"title":"边缘协作网络的在线分散任务分配优化","authors":"Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li","doi":"10.1109/ISCC55528.2022.9912855","DOIUrl":null,"url":null,"abstract":"In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Decentralized Task Allocation Optimization for Edge Collaborative Networks\",\"authors\":\"Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li\",\"doi\":\"10.1109/ISCC55528.2022.9912855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在集中式任务分配策略中,需要从分布式边缘节点收集实时状态信息。因此,在骨干网上出现了传输过载现象,并导致集中式策略性能的严重下降。为了解决这一问题,本文提出了一种基于多智能体深度强化学习的在线分散任务分配机制,其中每个边缘节点根据本地网络状态信息进行任务分配决策。采用集中训练分布式执行的方法降低数据传输负荷,在训练阶段采用基于值分解的技术提高边缘协同网络任务分配的长期性能。我们进行了大量的实验,评估结果表明,我们的机制在减少长期平均系统延迟和提高请求完成率方面优于其他三种基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Decentralized Task Allocation Optimization for Edge Collaborative Networks
In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1