{"title":"模板方法超启发式","authors":"J. Woodward, J. Swan","doi":"10.1145/2598394.2609843","DOIUrl":null,"url":null,"abstract":"The optimization literature is awash with metaphorically-inspired metaheuristics and their subsequent variants and hybridizations. This results in a plethora of methods, with descriptions that are often polluted with the language of the metaphor which inspired them [8]. Within such a fragmented field, the traditional approach of manual 'operator tweaking' makes it difficult to establish the contribution of individual metaheuristic components to the overall success of a methodology. Irrespective of whether it happens to best the state-of-the-art, such 'tweaking' is so labour-intensive that does relatively little to advance scientific understanding. In order to introduce further structure and rigour, it is therefore desirable to not only to be able to specify entire families of metaheuristics (rather than individual metaheuristics), but also be able to generate and test them. In particular, the adoption of a model agnostic approach towards the generation of metaheuristics would help to establish which metaheuristic components are useful contributors to a solution.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Template method hyper-heuristics\",\"authors\":\"J. Woodward, J. Swan\",\"doi\":\"10.1145/2598394.2609843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization literature is awash with metaphorically-inspired metaheuristics and their subsequent variants and hybridizations. This results in a plethora of methods, with descriptions that are often polluted with the language of the metaphor which inspired them [8]. Within such a fragmented field, the traditional approach of manual 'operator tweaking' makes it difficult to establish the contribution of individual metaheuristic components to the overall success of a methodology. Irrespective of whether it happens to best the state-of-the-art, such 'tweaking' is so labour-intensive that does relatively little to advance scientific understanding. In order to introduce further structure and rigour, it is therefore desirable to not only to be able to specify entire families of metaheuristics (rather than individual metaheuristics), but also be able to generate and test them. In particular, the adoption of a model agnostic approach towards the generation of metaheuristics would help to establish which metaheuristic components are useful contributors to a solution.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2609843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2609843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The optimization literature is awash with metaphorically-inspired metaheuristics and their subsequent variants and hybridizations. This results in a plethora of methods, with descriptions that are often polluted with the language of the metaphor which inspired them [8]. Within such a fragmented field, the traditional approach of manual 'operator tweaking' makes it difficult to establish the contribution of individual metaheuristic components to the overall success of a methodology. Irrespective of whether it happens to best the state-of-the-art, such 'tweaking' is so labour-intensive that does relatively little to advance scientific understanding. In order to introduce further structure and rigour, it is therefore desirable to not only to be able to specify entire families of metaheuristics (rather than individual metaheuristics), but also be able to generate and test them. In particular, the adoption of a model agnostic approach towards the generation of metaheuristics would help to establish which metaheuristic components are useful contributors to a solution.