{"title":"MRRNS中的小模复制","authors":"N. Wigley, G. Jullien, Daniel Reaume, W. Miller","doi":"10.1109/ARITH.1991.145539","DOIUrl":null,"url":null,"abstract":"The authors describe mapping, scaling, and conversion processes using a new mapping strategy for the modulus replication residue number system (MRRNS). The strategy allows direct mapping of bits of either a purely real or multiplexed bit coded complex number to a set of independent rings, defined by moduli 3, 5, and 7. The MRRNS technique is superior to a large QRNS system operating with a computational dynamic range of over 27 b. A classical radix-4 implementation of a 1024 FFT is used for the comparison. The scaling and conversion procedure is shown to be a set of finite ring calculations followed by an array of ordinary binary adders. The VLSI implementation of the most complex finite ring circuit required (a Mod 7 multiplier) is shown to be easily implemented using the switching tree approach, and mask extracted simulations at 50 MHz demonstrate the embedding of the switching trees in a dynamic pipeline/evaluate circuit with restoring latch.<<ETX>>","PeriodicalId":190650,"journal":{"name":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Small moduli replications in the MRRNS\",\"authors\":\"N. Wigley, G. Jullien, Daniel Reaume, W. Miller\",\"doi\":\"10.1109/ARITH.1991.145539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe mapping, scaling, and conversion processes using a new mapping strategy for the modulus replication residue number system (MRRNS). The strategy allows direct mapping of bits of either a purely real or multiplexed bit coded complex number to a set of independent rings, defined by moduli 3, 5, and 7. The MRRNS technique is superior to a large QRNS system operating with a computational dynamic range of over 27 b. A classical radix-4 implementation of a 1024 FFT is used for the comparison. The scaling and conversion procedure is shown to be a set of finite ring calculations followed by an array of ordinary binary adders. The VLSI implementation of the most complex finite ring circuit required (a Mod 7 multiplier) is shown to be easily implemented using the switching tree approach, and mask extracted simulations at 50 MHz demonstrate the embedding of the switching trees in a dynamic pipeline/evaluate circuit with restoring latch.<<ETX>>\",\"PeriodicalId\":190650,\"journal\":{\"name\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1991.145539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1991.145539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The authors describe mapping, scaling, and conversion processes using a new mapping strategy for the modulus replication residue number system (MRRNS). The strategy allows direct mapping of bits of either a purely real or multiplexed bit coded complex number to a set of independent rings, defined by moduli 3, 5, and 7. The MRRNS technique is superior to a large QRNS system operating with a computational dynamic range of over 27 b. A classical radix-4 implementation of a 1024 FFT is used for the comparison. The scaling and conversion procedure is shown to be a set of finite ring calculations followed by an array of ordinary binary adders. The VLSI implementation of the most complex finite ring circuit required (a Mod 7 multiplier) is shown to be easily implemented using the switching tree approach, and mask extracted simulations at 50 MHz demonstrate the embedding of the switching trees in a dynamic pipeline/evaluate circuit with restoring latch.<>