基于测量的对墨西哥湾极端海浪状况的估计

C. Jeong, V. Panchang
{"title":"基于测量的对墨西哥湾极端海浪状况的估计","authors":"C. Jeong, V. Panchang","doi":"10.1109/OCEANS.2008.5151997","DOIUrl":null,"url":null,"abstract":"During 2004 and 2005, four severe hurricanes - Ivan, Dennis, Katrina, and Rita - occurred in the Gulf of Mexico. These hurricanes created winds and waves that were close to or exceeded the calculated 100 years return period conditions. As a result, new estimates of extreme metocean conditions are needed for many offshore engineering applications. Recently, such estimates have been derived by Berek et al. (2007) using hindcast (modeled) data. In some regions of the Gulf, these new (proposed) estimates suggest a substantial increase, relative to the American Petroleum Institute's current estimates of the 100-year design conditions, the maximum wave heights increasing by as much as 6.4 m and the wind speeds by 5 m/s. We have therefore reexamined the problem and obtained additional estimates in the Gulf of Mexico using other methods. To overcome difficulties associated with synthetic data which can generally subject to modeling related errors, we use buoy data. At several locations, nearly 32 years of data are available. (According to a rule of thumb, extrapolations to three or four times the data length are appropriate). In the context of statistical modeling of extremes, the basic problem is ill-posed. Various difficulties and the need for multiple or even non-standard tools have been noted in the literature. Instead of the traditional methodology of using one or more distribution (e.g. Gumbel, Weibull, Frechet, etc.), we used the Generalized Extreme Value distribution, which eliminates the need for identifying the most appropriate distribution. Also, to increase the utility and value of possibly short datasets, we use the r-largest order statistic (instead of the annual maximum traditionally used). This approach is intended to make more efficient use of the data and to mitigate concerns about small dataset length. Using these methods, estimates of the significant wave heights and wind-speeds are derived for the Gulf of Mexico and compared with the estimates of Berek et al. (2007). Besides traditional statistical aspects, factors such as long-term trends in wave height changes must also be considered. In the literature, such trends have been noted off both US coasts. We estimate an average increase of 3.5 cm/year in the annual maximum significant wave heights; Komar and Allan (2007) give an estimate of 1.7 cm/year for the location of a buoy in the mid-Atlantic. Based on these our study has made initial attempts to include an appropriate ldquotrend parameterrdquo in the n-year return period calculation.","PeriodicalId":113677,"journal":{"name":"OCEANS 2008","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Measurement-based estimates of extreme wave conditions for the Gulf of Mexico\",\"authors\":\"C. Jeong, V. Panchang\",\"doi\":\"10.1109/OCEANS.2008.5151997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During 2004 and 2005, four severe hurricanes - Ivan, Dennis, Katrina, and Rita - occurred in the Gulf of Mexico. These hurricanes created winds and waves that were close to or exceeded the calculated 100 years return period conditions. As a result, new estimates of extreme metocean conditions are needed for many offshore engineering applications. Recently, such estimates have been derived by Berek et al. (2007) using hindcast (modeled) data. In some regions of the Gulf, these new (proposed) estimates suggest a substantial increase, relative to the American Petroleum Institute's current estimates of the 100-year design conditions, the maximum wave heights increasing by as much as 6.4 m and the wind speeds by 5 m/s. We have therefore reexamined the problem and obtained additional estimates in the Gulf of Mexico using other methods. To overcome difficulties associated with synthetic data which can generally subject to modeling related errors, we use buoy data. At several locations, nearly 32 years of data are available. (According to a rule of thumb, extrapolations to three or four times the data length are appropriate). In the context of statistical modeling of extremes, the basic problem is ill-posed. Various difficulties and the need for multiple or even non-standard tools have been noted in the literature. Instead of the traditional methodology of using one or more distribution (e.g. Gumbel, Weibull, Frechet, etc.), we used the Generalized Extreme Value distribution, which eliminates the need for identifying the most appropriate distribution. Also, to increase the utility and value of possibly short datasets, we use the r-largest order statistic (instead of the annual maximum traditionally used). This approach is intended to make more efficient use of the data and to mitigate concerns about small dataset length. Using these methods, estimates of the significant wave heights and wind-speeds are derived for the Gulf of Mexico and compared with the estimates of Berek et al. (2007). Besides traditional statistical aspects, factors such as long-term trends in wave height changes must also be considered. In the literature, such trends have been noted off both US coasts. We estimate an average increase of 3.5 cm/year in the annual maximum significant wave heights; Komar and Allan (2007) give an estimate of 1.7 cm/year for the location of a buoy in the mid-Atlantic. Based on these our study has made initial attempts to include an appropriate ldquotrend parameterrdquo in the n-year return period calculation.\",\"PeriodicalId\":113677,\"journal\":{\"name\":\"OCEANS 2008\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2008\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2008.5151997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2008.5151997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在2004年和2005年期间,四个严重的飓风——伊万、丹尼斯、卡特里娜和丽塔——袭击了墨西哥湾。这些飓风产生的风和波接近或超过了计算出来的100年一次的重现周期条件。因此,许多海上工程应用需要对极端海洋条件进行新的估计。最近,Berek等人(2007)利用后投(建模)数据得出了这样的估计。在墨西哥湾的一些地区,与美国石油协会目前对100年设计条件的估计相比,这些新的(提议的)估计表明,最大浪高增加了6.4米,风速增加了5米/秒。因此,我们重新审查了这个问题,并使用其他方法在墨西哥湾获得了额外的估计数。为了克服与合成数据相关的困难,通常会受到建模相关误差的影响,我们使用浮标数据。在几个地点,可以获得近32年的数据。(根据经验法则,外推到数据长度的三到四倍是合适的)。在极值统计建模的背景下,基本问题是不适定的。各种困难和需要多个甚至非标准的工具已经在文献中指出。代替传统的使用一个或多个分布(例如Gumbel, Weibull, Frechet等)的方法,我们使用了广义极值分布,它消除了识别最合适分布的需要。此外,为了增加可能较短的数据集的效用和价值,我们使用了r最大的顺序统计量(而不是传统上使用的年度最大值)。这种方法旨在更有效地利用数据,并减轻对小数据集长度的担忧。使用这些方法,得出了墨西哥湾的有效浪高和风速的估计,并与Berek等人(2007)的估计进行了比较。除了传统的统计方面外,还必须考虑波高变化的长期趋势等因素。在文献中,这种趋势已经在美国海岸附近被注意到。我们估计年最大有效浪高平均增加3.5 cm/年;Komar和Allan(2007)对大西洋中部的浮标位置给出了每年1.7厘米的估计。在此基础上,我们的研究初步尝试在n年收益率计算中纳入适当的市场趋势参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement-based estimates of extreme wave conditions for the Gulf of Mexico
During 2004 and 2005, four severe hurricanes - Ivan, Dennis, Katrina, and Rita - occurred in the Gulf of Mexico. These hurricanes created winds and waves that were close to or exceeded the calculated 100 years return period conditions. As a result, new estimates of extreme metocean conditions are needed for many offshore engineering applications. Recently, such estimates have been derived by Berek et al. (2007) using hindcast (modeled) data. In some regions of the Gulf, these new (proposed) estimates suggest a substantial increase, relative to the American Petroleum Institute's current estimates of the 100-year design conditions, the maximum wave heights increasing by as much as 6.4 m and the wind speeds by 5 m/s. We have therefore reexamined the problem and obtained additional estimates in the Gulf of Mexico using other methods. To overcome difficulties associated with synthetic data which can generally subject to modeling related errors, we use buoy data. At several locations, nearly 32 years of data are available. (According to a rule of thumb, extrapolations to three or four times the data length are appropriate). In the context of statistical modeling of extremes, the basic problem is ill-posed. Various difficulties and the need for multiple or even non-standard tools have been noted in the literature. Instead of the traditional methodology of using one or more distribution (e.g. Gumbel, Weibull, Frechet, etc.), we used the Generalized Extreme Value distribution, which eliminates the need for identifying the most appropriate distribution. Also, to increase the utility and value of possibly short datasets, we use the r-largest order statistic (instead of the annual maximum traditionally used). This approach is intended to make more efficient use of the data and to mitigate concerns about small dataset length. Using these methods, estimates of the significant wave heights and wind-speeds are derived for the Gulf of Mexico and compared with the estimates of Berek et al. (2007). Besides traditional statistical aspects, factors such as long-term trends in wave height changes must also be considered. In the literature, such trends have been noted off both US coasts. We estimate an average increase of 3.5 cm/year in the annual maximum significant wave heights; Komar and Allan (2007) give an estimate of 1.7 cm/year for the location of a buoy in the mid-Atlantic. Based on these our study has made initial attempts to include an appropriate ldquotrend parameterrdquo in the n-year return period calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diving behavior of female loggerhead turtles (Caretta caretta) during their internesting interval and an evaluation of the risk of boat strikes Variability of observed reverberation and estimated sea-floor scattering strength 3-D motion and structure estimation for arbitrary scenes from 2-D optical and sonar video AUV measurements of under-ice thermal structure Marine Broadband Framework for coastal fishings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1