体液与碳表面的相互作用

B. Walkowiak, W. Jakubowski, W. Okrój, V. Kochmanska, V. Króliczak
{"title":"体液与碳表面的相互作用","authors":"B. Walkowiak, W. Jakubowski, W. Okrój, V. Kochmanska, V. Króliczak","doi":"10.1109/WBL.2001.946551","DOIUrl":null,"url":null,"abstract":"The use of medical implants allows one to improve patients lives, and quite often it can return patients back to normal activity in their personal and professional lives. One of the most difficult problems, which is necessary to solve, is a proper selection of the materials to be used for implant construction and/or implant coating. The surface of an implant is exposed to continuous contact with body fluids and several unwanted processes may occur there. Titanium and its alloys are generally accepted as the best tolerated materials for implants. But currently many efforts are focused on thin layers of crystalline carbon, i.e. diamond like carbon (DLC) and nanocrystalline diamond (NCD), used for coating of metal implants. This technology was successfully applied in bone surgery (screws), and more recently in heart surgery (stents). We found, with the fluorescence microscopy technique, that bacterial growth was possible on stainless steel, to a lesser degree on titanium, but NCD was almost totally resistant to bacterial colonization.","PeriodicalId":315832,"journal":{"name":"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interaction of body fluids with carbon surfaces\",\"authors\":\"B. Walkowiak, W. Jakubowski, W. Okrój, V. Kochmanska, V. Króliczak\",\"doi\":\"10.1109/WBL.2001.946551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of medical implants allows one to improve patients lives, and quite often it can return patients back to normal activity in their personal and professional lives. One of the most difficult problems, which is necessary to solve, is a proper selection of the materials to be used for implant construction and/or implant coating. The surface of an implant is exposed to continuous contact with body fluids and several unwanted processes may occur there. Titanium and its alloys are generally accepted as the best tolerated materials for implants. But currently many efforts are focused on thin layers of crystalline carbon, i.e. diamond like carbon (DLC) and nanocrystalline diamond (NCD), used for coating of metal implants. This technology was successfully applied in bone surgery (screws), and more recently in heart surgery (stents). We found, with the fluorescence microscopy technique, that bacterial growth was possible on stainless steel, to a lesser degree on titanium, but NCD was almost totally resistant to bacterial colonization.\",\"PeriodicalId\":315832,\"journal\":{\"name\":\"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WBL.2001.946551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WBL.2001.946551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

医疗植入物的使用可以改善患者的生活,并且通常可以使患者恢复正常的个人和职业生活。正确选择种植体结构和/或种植体涂层的材料是最困难的问题之一,也是必须解决的问题之一。植入物的表面暴露在与体液的持续接触中,那里可能会发生一些不想要的过程。钛及其合金是公认的最耐受性的植入材料。但目前许多努力都集中在薄层晶体碳上,即金刚石样碳(DLC)和纳米晶金刚石(NCD),用于金属植入物的涂层。该技术已成功应用于骨手术(螺钉),最近又应用于心脏手术(支架)。我们发现,通过荧光显微镜技术,细菌可以在不锈钢上生长,在钛上生长的程度较低,但NCD几乎完全抵抗细菌的定植。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction of body fluids with carbon surfaces
The use of medical implants allows one to improve patients lives, and quite often it can return patients back to normal activity in their personal and professional lives. One of the most difficult problems, which is necessary to solve, is a proper selection of the materials to be used for implant construction and/or implant coating. The surface of an implant is exposed to continuous contact with body fluids and several unwanted processes may occur there. Titanium and its alloys are generally accepted as the best tolerated materials for implants. But currently many efforts are focused on thin layers of crystalline carbon, i.e. diamond like carbon (DLC) and nanocrystalline diamond (NCD), used for coating of metal implants. This technology was successfully applied in bone surgery (screws), and more recently in heart surgery (stents). We found, with the fluorescence microscopy technique, that bacterial growth was possible on stainless steel, to a lesser degree on titanium, but NCD was almost totally resistant to bacterial colonization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiotherapy dosimetry: a novel application for polycrystalline diamond thin films New carbon based material layers for medical application Depositing of diamond-like films by plasma jets Nanocrystalline diamond films for cutting tools Ion beam nucleation of diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1