你愿意跳舞迎接挑战吗?:预测TikTok挑战的用户参与度

L. Ng, John Yeh Han Tan, Darryl Jing Heng Tan, R. Lee
{"title":"你愿意跳舞迎接挑战吗?:预测TikTok挑战的用户参与度","authors":"L. Ng, John Yeh Han Tan, Darryl Jing Heng Tan, R. Lee","doi":"10.1145/3487351.3488276","DOIUrl":null,"url":null,"abstract":"TikTok is a popular new social media, where users express themselves through short video clips. A common form of interaction on the platform is participating in \"challenges\", which are songs and dances for users to iterate upon. Challenge contagion can be measured through replication reach, i.e., users uploading videos of their participation in the challenges. The uniqueness of the TikTok platform where both challenge content and user preferences are evolving requires the combination of challenge and user representation. This paper investigates social contagion of TikTok challenges through predicting a user's participation. We propose a novel deep learning model, deepChallenger, to learn and combine latent user and challenge representations from past videos to perform this user-challenge prediction task. We collect a dataset of over 7,000 videos from 12 trending challenges on the ForYouPage, the app's landing page, and over 10,000 videos from 1303 users. Extensive experiments are conducted and the results show that our proposed deepChallenger (F1=0.494) outperforms baselines (F1=0.188) in the prediction task.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Will you dance to the challenge?: predicting user participation of TikTok challenges\",\"authors\":\"L. Ng, John Yeh Han Tan, Darryl Jing Heng Tan, R. Lee\",\"doi\":\"10.1145/3487351.3488276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TikTok is a popular new social media, where users express themselves through short video clips. A common form of interaction on the platform is participating in \\\"challenges\\\", which are songs and dances for users to iterate upon. Challenge contagion can be measured through replication reach, i.e., users uploading videos of their participation in the challenges. The uniqueness of the TikTok platform where both challenge content and user preferences are evolving requires the combination of challenge and user representation. This paper investigates social contagion of TikTok challenges through predicting a user's participation. We propose a novel deep learning model, deepChallenger, to learn and combine latent user and challenge representations from past videos to perform this user-challenge prediction task. We collect a dataset of over 7,000 videos from 12 trending challenges on the ForYouPage, the app's landing page, and over 10,000 videos from 1303 users. Extensive experiments are conducted and the results show that our proposed deepChallenger (F1=0.494) outperforms baselines (F1=0.188) in the prediction task.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

抖音是一种流行的新型社交媒体,用户可以通过短视频片段表达自己。平台上一种常见的互动形式是参与“挑战”,这是用户迭代的歌曲和舞蹈。挑战传染可以通过复制范围来衡量,即用户上传他们参与挑战的视频。挑战内容和用户偏好都在不断变化的TikTok平台的独特性需要挑战和用户表现的结合。本文通过预测用户参与来研究TikTok挑战的社会传染。我们提出了一种新的深度学习模型,deepChallenger,来学习和结合过去视频中的潜在用户和挑战表示来执行这个用户挑战预测任务。我们从ForYouPage(应用程序的登陆页面)上的12个趋势挑战中收集了超过7000个视频的数据集,以及来自1303名用户的10,000多个视频。大量实验结果表明,我们提出的deepChallenger (F1=0.494)在预测任务中优于baseline (F1=0.188)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Will you dance to the challenge?: predicting user participation of TikTok challenges
TikTok is a popular new social media, where users express themselves through short video clips. A common form of interaction on the platform is participating in "challenges", which are songs and dances for users to iterate upon. Challenge contagion can be measured through replication reach, i.e., users uploading videos of their participation in the challenges. The uniqueness of the TikTok platform where both challenge content and user preferences are evolving requires the combination of challenge and user representation. This paper investigates social contagion of TikTok challenges through predicting a user's participation. We propose a novel deep learning model, deepChallenger, to learn and combine latent user and challenge representations from past videos to perform this user-challenge prediction task. We collect a dataset of over 7,000 videos from 12 trending challenges on the ForYouPage, the app's landing page, and over 10,000 videos from 1303 users. Extensive experiments are conducted and the results show that our proposed deepChallenger (F1=0.494) outperforms baselines (F1=0.188) in the prediction task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1