文档二值化k均值算法参数自动调优

A. Gattal, Faycel Abbas, Mohamed Ridda Laouar
{"title":"文档二值化k均值算法参数自动调优","authors":"A. Gattal, Faycel Abbas, Mohamed Ridda Laouar","doi":"10.1145/3330089.3330124","DOIUrl":null,"url":null,"abstract":"The document binarization is a primary processing step toward document recognition system. It goals to separate the foreground from the document background. In this paper, we propose an algorithm for the binarization of document images degraded by using the clustering algorithm K-Means with automatic parameter tuning. It uses the K-Means algorithm to classify the document image into three classes as background, foreground and noise labels. Experimental results show that our method is more robust to the state of the art on recent benchmarks on the H-DIBCO 2016 dataset.","PeriodicalId":251275,"journal":{"name":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic Parameter Tuning of K-Means Algorithm for Document Binarization\",\"authors\":\"A. Gattal, Faycel Abbas, Mohamed Ridda Laouar\",\"doi\":\"10.1145/3330089.3330124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The document binarization is a primary processing step toward document recognition system. It goals to separate the foreground from the document background. In this paper, we propose an algorithm for the binarization of document images degraded by using the clustering algorithm K-Means with automatic parameter tuning. It uses the K-Means algorithm to classify the document image into three classes as background, foreground and noise labels. Experimental results show that our method is more robust to the state of the art on recent benchmarks on the H-DIBCO 2016 dataset.\",\"PeriodicalId\":251275,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Software Engineering and New Technologies\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Software Engineering and New Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3330089.3330124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330089.3330124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

文档二值化是文档识别系统的主要处理步骤。它的目标是将前景从文档背景中分离出来。本文提出了一种基于K-Means聚类算法的退化文档图像二值化算法。它使用K-Means算法将文档图像分为背景标签、前景标签和噪声标签三类。实验结果表明,我们的方法对最近在H-DIBCO 2016数据集上的最新基准测试具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Parameter Tuning of K-Means Algorithm for Document Binarization
The document binarization is a primary processing step toward document recognition system. It goals to separate the foreground from the document background. In this paper, we propose an algorithm for the binarization of document images degraded by using the clustering algorithm K-Means with automatic parameter tuning. It uses the K-Means algorithm to classify the document image into three classes as background, foreground and noise labels. Experimental results show that our method is more robust to the state of the art on recent benchmarks on the H-DIBCO 2016 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud technology based Information System for testing and certification centers Best Road Based Immersive Visualization Framework for patient in emergency: The ISRM application A New System For Audio Mining: Using of MDT+ for automatic prediction of new singers success Normalization of XML Schema Definitions Local Binary Patterns for Gender Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1