基于神经网络的下肢假肢再生马达驱动优化控制

T. Barto, D. Simon
{"title":"基于神经网络的下肢假肢再生马达驱动优化控制","authors":"T. Barto, D. Simon","doi":"10.23919/ACC.2017.7963783","DOIUrl":null,"url":null,"abstract":"A voltage source converter (VSC) is incorporated in an active prosthetic leg design. The VSC supplies power to the prosthesis motor and regenerates energy from the prosthesis motor for storage in a supercapacitor bank. An artificial neural network controls the VSC switching so that the prosthesis motor generates a knee torque that matches the torque that is output from a passivity-based controller (PBC). The neural network, PBC, and prosthesis motor parameters are optimized with an evolutionary algorithm to achieve knee angle tracking. Several reference trajectories from able-bodied walking were tracked with an RMS tracking error of less than 0.5° while regenerating up to 67 Joules of energy during four gait cycles.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural network control of an optimized regenerative motor drive for a lower-limb prosthesis\",\"authors\":\"T. Barto, D. Simon\",\"doi\":\"10.23919/ACC.2017.7963783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A voltage source converter (VSC) is incorporated in an active prosthetic leg design. The VSC supplies power to the prosthesis motor and regenerates energy from the prosthesis motor for storage in a supercapacitor bank. An artificial neural network controls the VSC switching so that the prosthesis motor generates a knee torque that matches the torque that is output from a passivity-based controller (PBC). The neural network, PBC, and prosthesis motor parameters are optimized with an evolutionary algorithm to achieve knee angle tracking. Several reference trajectories from able-bodied walking were tracked with an RMS tracking error of less than 0.5° while regenerating up to 67 Joules of energy during four gait cycles.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

一个电压源转换器(VSC)被纳入一个主动假肢设计。VSC为假体电机供电,并从假体电机中再生能量以存储在超级电容器组中。人工神经网络控制VSC开关,使假体电机产生与基于被动控制器(PBC)输出的扭矩相匹配的膝关节扭矩。采用进化算法优化神经网络、PBC和假体运动参数,实现膝关节角度跟踪。在四个步态周期内再生能量高达67焦耳的情况下,以小于0.5°的RMS跟踪误差跟踪了几个健全行走的参考轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network control of an optimized regenerative motor drive for a lower-limb prosthesis
A voltage source converter (VSC) is incorporated in an active prosthetic leg design. The VSC supplies power to the prosthesis motor and regenerates energy from the prosthesis motor for storage in a supercapacitor bank. An artificial neural network controls the VSC switching so that the prosthesis motor generates a knee torque that matches the torque that is output from a passivity-based controller (PBC). The neural network, PBC, and prosthesis motor parameters are optimized with an evolutionary algorithm to achieve knee angle tracking. Several reference trajectories from able-bodied walking were tracked with an RMS tracking error of less than 0.5° while regenerating up to 67 Joules of energy during four gait cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1