O. Hohlfeld, Helge Reelfs, Jan Rüth, F. Schmidt, T. Zimmermann, Jens Hiller, Klaus Wehrle
{"title":"与应用程序无关的数据报处理卸载","authors":"O. Hohlfeld, Helge Reelfs, Jan Rüth, F. Schmidt, T. Zimmermann, Jens Hiller, Klaus Wehrle","doi":"10.1109/ITC30.2018.00015","DOIUrl":null,"url":null,"abstract":"As network speed increases, servers struggle to serve all requests directed at them. This challenge is rooted in a partitioned data path where the split between the kernel space networking stack and user space applications induces overheads. To address this challenge, we propose Santa, an architecture to optimize the data path by enabling server applications to (partially) offload packet processing to a generic rule processor. We exemplify Santa by showing how it can drastically accelerate UDP packet processing in the Linux kernel—a currently neglected domain. Our evaluation focuses on accelerating DNS traffic for which we find a performance increase by a factor of 5.5 on real-world request pattern.","PeriodicalId":159861,"journal":{"name":"2018 30th International Teletraffic Congress (ITC 30)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application-Agnostic Offloading of Datagram Processing\",\"authors\":\"O. Hohlfeld, Helge Reelfs, Jan Rüth, F. Schmidt, T. Zimmermann, Jens Hiller, Klaus Wehrle\",\"doi\":\"10.1109/ITC30.2018.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As network speed increases, servers struggle to serve all requests directed at them. This challenge is rooted in a partitioned data path where the split between the kernel space networking stack and user space applications induces overheads. To address this challenge, we propose Santa, an architecture to optimize the data path by enabling server applications to (partially) offload packet processing to a generic rule processor. We exemplify Santa by showing how it can drastically accelerate UDP packet processing in the Linux kernel—a currently neglected domain. Our evaluation focuses on accelerating DNS traffic for which we find a performance increase by a factor of 5.5 on real-world request pattern.\",\"PeriodicalId\":159861,\"journal\":{\"name\":\"2018 30th International Teletraffic Congress (ITC 30)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Teletraffic Congress (ITC 30)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC30.2018.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Teletraffic Congress (ITC 30)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC30.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application-Agnostic Offloading of Datagram Processing
As network speed increases, servers struggle to serve all requests directed at them. This challenge is rooted in a partitioned data path where the split between the kernel space networking stack and user space applications induces overheads. To address this challenge, we propose Santa, an architecture to optimize the data path by enabling server applications to (partially) offload packet processing to a generic rule processor. We exemplify Santa by showing how it can drastically accelerate UDP packet processing in the Linux kernel—a currently neglected domain. Our evaluation focuses on accelerating DNS traffic for which we find a performance increase by a factor of 5.5 on real-world request pattern.