计算机支持的文献馆藏关键词交互赋值

S. Agarwal, Fabian Beck
{"title":"计算机支持的文献馆藏关键词交互赋值","authors":"S. Agarwal, Fabian Beck","doi":"10.1109/MLUI52768.2018.10075564","DOIUrl":null,"url":null,"abstract":"A curated literature collection on a specific topic helps researchers to find relevant articles quickly. Assigning multiple keywords to each article is one of the techniques to structure such a collection. But it is challenging to assign all the keywords consistently without any gaps or ambiguities. We propose to support the user with a machine learning technique that suggests keywords for articles in a literature collection browser. We provide visual explanations to make the keyword suggestions transparent. The suggestions are based on previous keyword assignments. The machine learning technique learns on the fly from the interactive assignments of the user. We seamlessly integrate the proposed technique in an existing literature collection browser and investigate various usage scenarios through an early prototype.","PeriodicalId":421877,"journal":{"name":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computer-supported Interactive Assignment of Keywords for Literature Collections\",\"authors\":\"S. Agarwal, Fabian Beck\",\"doi\":\"10.1109/MLUI52768.2018.10075564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A curated literature collection on a specific topic helps researchers to find relevant articles quickly. Assigning multiple keywords to each article is one of the techniques to structure such a collection. But it is challenging to assign all the keywords consistently without any gaps or ambiguities. We propose to support the user with a machine learning technique that suggests keywords for articles in a literature collection browser. We provide visual explanations to make the keyword suggestions transparent. The suggestions are based on previous keyword assignments. The machine learning technique learns on the fly from the interactive assignments of the user. We seamlessly integrate the proposed technique in an existing literature collection browser and investigate various usage scenarios through an early prototype.\",\"PeriodicalId\":421877,\"journal\":{\"name\":\"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLUI52768.2018.10075564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLUI52768.2018.10075564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对特定主题的文献收集有助于研究人员快速找到相关文章。为每篇文章分配多个关键字是构建此类集合的技术之一。但是,要一致地分配所有关键字而没有任何空白或歧义是具有挑战性的。我们建议使用一种机器学习技术来支持用户,该技术可以为文学收藏浏览器中的文章提供关键词建议。我们提供可视化的解释,使关键字建议透明。这些建议是基于以前的关键字分配。机器学习技术从用户的交互式任务中动态学习。我们将提出的技术无缝集成到现有的文献收集浏览器中,并通过早期原型研究各种使用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer-supported Interactive Assignment of Keywords for Literature Collections
A curated literature collection on a specific topic helps researchers to find relevant articles quickly. Assigning multiple keywords to each article is one of the techniques to structure such a collection. But it is challenging to assign all the keywords consistently without any gaps or ambiguities. We propose to support the user with a machine learning technique that suggests keywords for articles in a literature collection browser. We provide visual explanations to make the keyword suggestions transparent. The suggestions are based on previous keyword assignments. The machine learning technique learns on the fly from the interactive assignments of the user. We seamlessly integrate the proposed technique in an existing literature collection browser and investigate various usage scenarios through an early prototype.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Human-in-the-Loop Software Platform HyperTuner: Visual Analytics for Hyperparameter Tuning by Professionals A Bidirectional Pipeline for Semantic Interaction ModelSpace: Visualizing the Trails of Data Models in Visual Analytics Systems Providing Contextual Assistance in Response to Frustration in Visual Analytics Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1