基于摄像机网络的主动推理检索

Daozheng Chen, M. Bilgic, L. Getoor, D. Jacobs, Lilyana Mihalkova, Tom Yeh
{"title":"基于摄像机网络的主动推理检索","authors":"Daozheng Chen, M. Bilgic, L. Getoor, D. Jacobs, Lilyana Mihalkova, Tom Yeh","doi":"10.1109/POV.2011.5712363","DOIUrl":null,"url":null,"abstract":"We address the problem of searching camera network videos to retrieve frames containing specified individuals. We show the benefit of utilizing a learned probabilistic model that captures dependencies among the cameras. In addition, we develop an active inference framework that can request human input at inference time, directing human attention to the portions of the videos whose correct annotation would provide the biggest performance improvements. Our primary contribution is to show that by mapping video frames in a camera network onto a graphical model, we can apply collective classification and active inference algorithms to significantly increase the performance of the retrieval system, while minimizing the number of human annotations required.","PeriodicalId":197184,"journal":{"name":"2011 IEEE Workshop on Person-Oriented Vision","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Active inference for retrieval in camera networks\",\"authors\":\"Daozheng Chen, M. Bilgic, L. Getoor, D. Jacobs, Lilyana Mihalkova, Tom Yeh\",\"doi\":\"10.1109/POV.2011.5712363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of searching camera network videos to retrieve frames containing specified individuals. We show the benefit of utilizing a learned probabilistic model that captures dependencies among the cameras. In addition, we develop an active inference framework that can request human input at inference time, directing human attention to the portions of the videos whose correct annotation would provide the biggest performance improvements. Our primary contribution is to show that by mapping video frames in a camera network onto a graphical model, we can apply collective classification and active inference algorithms to significantly increase the performance of the retrieval system, while minimizing the number of human annotations required.\",\"PeriodicalId\":197184,\"journal\":{\"name\":\"2011 IEEE Workshop on Person-Oriented Vision\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Person-Oriented Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POV.2011.5712363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Person-Oriented Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POV.2011.5712363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们解决了搜索摄像机网络视频以检索包含特定个体的帧的问题。我们展示了利用学习概率模型捕获相机之间的依赖关系的好处。此外,我们开发了一个主动推理框架,可以在推理时请求人工输入,将人类的注意力引导到视频的正确注释将提供最大性能改进的部分。我们的主要贡献是通过将摄像机网络中的视频帧映射到图形模型上,我们可以应用集体分类和主动推理算法来显着提高检索系统的性能,同时最小化所需的人工注释的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active inference for retrieval in camera networks
We address the problem of searching camera network videos to retrieve frames containing specified individuals. We show the benefit of utilizing a learned probabilistic model that captures dependencies among the cameras. In addition, we develop an active inference framework that can request human input at inference time, directing human attention to the portions of the videos whose correct annotation would provide the biggest performance improvements. Our primary contribution is to show that by mapping video frames in a camera network onto a graphical model, we can apply collective classification and active inference algorithms to significantly increase the performance of the retrieval system, while minimizing the number of human annotations required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User oriented language model for face detection A system for automatic and interactive detection of static objects Active inference for retrieval in camera networks Finding lost children A benchmark for interactive image segmentation algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1