Sahil Datta, A. Aondoakaa, Jorunn Jo Holmberg, E. Antonova
{"title":"基于密集注意网络(DAN)的脑电信号无声语音识别","authors":"Sahil Datta, A. Aondoakaa, Jorunn Jo Holmberg, E. Antonova","doi":"10.1109/icassp43922.2022.9746241","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for recognizing silently spoken words from electroencephalogram (EEG) signals using a Dense Attention Network (DAN). The proposed network learns features from the EEG data by applying the self-attention mechanism on temporal, spectral, and spatial (electrodes) dimensions. We examined the effectiveness of the proposed network in extracting spatio-spectro-temporal in-formation from EEG signals and provide a network for recognition of silently spoken words. The DAN achieved a recognition rate of 80.7% in leave-trials-out (LTO) and 75.1% in leave-subject-out (LSO) cross validation methods. In a direct comparison with other methods, the DAN outperformed other existing techniques in recognition of silently spoken words.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition Of Silently Spoken Word From Eeg Signals Using Dense Attention Network (DAN)\",\"authors\":\"Sahil Datta, A. Aondoakaa, Jorunn Jo Holmberg, E. Antonova\",\"doi\":\"10.1109/icassp43922.2022.9746241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for recognizing silently spoken words from electroencephalogram (EEG) signals using a Dense Attention Network (DAN). The proposed network learns features from the EEG data by applying the self-attention mechanism on temporal, spectral, and spatial (electrodes) dimensions. We examined the effectiveness of the proposed network in extracting spatio-spectro-temporal in-formation from EEG signals and provide a network for recognition of silently spoken words. The DAN achieved a recognition rate of 80.7% in leave-trials-out (LTO) and 75.1% in leave-subject-out (LSO) cross validation methods. In a direct comparison with other methods, the DAN outperformed other existing techniques in recognition of silently spoken words.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recognition Of Silently Spoken Word From Eeg Signals Using Dense Attention Network (DAN)
In this paper, we propose a method for recognizing silently spoken words from electroencephalogram (EEG) signals using a Dense Attention Network (DAN). The proposed network learns features from the EEG data by applying the self-attention mechanism on temporal, spectral, and spatial (electrodes) dimensions. We examined the effectiveness of the proposed network in extracting spatio-spectro-temporal in-formation from EEG signals and provide a network for recognition of silently spoken words. The DAN achieved a recognition rate of 80.7% in leave-trials-out (LTO) and 75.1% in leave-subject-out (LSO) cross validation methods. In a direct comparison with other methods, the DAN outperformed other existing techniques in recognition of silently spoken words.