基于深度胶囊网络的COVID-19识别:基于低质量CXR图像的超分辨率CNN视角

G. Nneji, Jingye Cai, Jianhua Deng, H. Monday, E. James, Bona D. Lemessa, A. Z. Yutra, Y. B. Leta, Saifun Nahar
{"title":"基于深度胶囊网络的COVID-19识别:基于低质量CXR图像的超分辨率CNN视角","authors":"G. Nneji, Jingye Cai, Jianhua Deng, H. Monday, E. James, Bona D. Lemessa, A. Z. Yutra, Y. B. Leta, Saifun Nahar","doi":"10.1145/3507971.3507989","DOIUrl":null,"url":null,"abstract":"Chest X-ray has become a useful method in the detection of coronavirus disease-19 (COVID-19). Due to the extreme global COVID-19 crisis, using the computerized diagnosis method for COVID-19 classification upon CXR images could significantly decrease clinician workload. We explicitly addressed the issue of low CXR image resolution by using Super-Resolution Convolutional Neural Network (SRCNN) to effectively reconstruct high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents. Then, the HRCXR images are fed into the modified capsule network to retrieve distinct features for the classification of COVID-19. We demonstrate the proposed model on a public dataset and achieve ACC of 97.3%, SEN of 97.8%, SPE of 96.9%, and AUC of 98.0%. This new conceptual framework is proposed to play a vital task in the issue facing COVID-19 and related ailments.","PeriodicalId":439757,"journal":{"name":"Proceedings of the 7th International Conference on Communication and Information Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"COVID-19 Identification Using Deep Capsule Network: A Perspective of Super-Resolution CNN on Low-Quality CXR Images\",\"authors\":\"G. Nneji, Jingye Cai, Jianhua Deng, H. Monday, E. James, Bona D. Lemessa, A. Z. Yutra, Y. B. Leta, Saifun Nahar\",\"doi\":\"10.1145/3507971.3507989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chest X-ray has become a useful method in the detection of coronavirus disease-19 (COVID-19). Due to the extreme global COVID-19 crisis, using the computerized diagnosis method for COVID-19 classification upon CXR images could significantly decrease clinician workload. We explicitly addressed the issue of low CXR image resolution by using Super-Resolution Convolutional Neural Network (SRCNN) to effectively reconstruct high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents. Then, the HRCXR images are fed into the modified capsule network to retrieve distinct features for the classification of COVID-19. We demonstrate the proposed model on a public dataset and achieve ACC of 97.3%, SEN of 97.8%, SPE of 96.9%, and AUC of 98.0%. This new conceptual framework is proposed to play a vital task in the issue facing COVID-19 and related ailments.\",\"PeriodicalId\":439757,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Communication and Information Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Communication and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3507971.3507989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507971.3507989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

胸部x线检查已成为检测新型冠状病毒病(COVID-19)的一种有效方法。由于全球COVID-19危机的极端,使用计算机诊断方法根据CXR图像进行COVID-19分类可以显着减少临床医生的工作量。我们通过使用超分辨率卷积神经网络(SRCNN)从低分辨率(LR) CXR对应体中有效地重建高分辨率(HR) CXR图像,明确解决了低CXR图像分辨率的问题。然后,将HRCXR图像输入到改进的胶囊网络中,以检索不同特征,用于COVID-19分类。我们在一个公共数据集上验证了所提出的模型,并实现了ACC 97.3%, SEN 97.8%, SPE 96.9%和AUC 98.0%。提出这一新的概念框架是为了在COVID-19和相关疾病面临的问题上发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 Identification Using Deep Capsule Network: A Perspective of Super-Resolution CNN on Low-Quality CXR Images
Chest X-ray has become a useful method in the detection of coronavirus disease-19 (COVID-19). Due to the extreme global COVID-19 crisis, using the computerized diagnosis method for COVID-19 classification upon CXR images could significantly decrease clinician workload. We explicitly addressed the issue of low CXR image resolution by using Super-Resolution Convolutional Neural Network (SRCNN) to effectively reconstruct high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents. Then, the HRCXR images are fed into the modified capsule network to retrieve distinct features for the classification of COVID-19. We demonstrate the proposed model on a public dataset and achieve ACC of 97.3%, SEN of 97.8%, SPE of 96.9%, and AUC of 98.0%. This new conceptual framework is proposed to play a vital task in the issue facing COVID-19 and related ailments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Path Planning of UAV Based on Pheromone Diffusion Ant Colony Algorithm Access Control Design Based on User Role Type in Telemedicine System Using Ethereum Blockchain Identifying Giant Clams Species using Machine Learning Techniques Blockchain based Distributed Oracle in Time Sensitive Scenario A Reliable Digital Watermarking Algorithm Based On DCT-SVD Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1