一种用于大规模库存自动跟踪的计算机视觉管道

Stephen Gregory, Utkarsh Singh, Jeffrey G. Gray, Jon Hobbs
{"title":"一种用于大规模库存自动跟踪的计算机视觉管道","authors":"Stephen Gregory, Utkarsh Singh, Jeffrey G. Gray, Jon Hobbs","doi":"10.1145/3409334.3452063","DOIUrl":null,"url":null,"abstract":"Monitoring and tracking inventory is one of the most important aspects of administrating any large-scale enterprise operation that involves physical goods. One of the most evident examples of such operations is automotive manufacturing, especially for servicing a global customer base. We present a software solution of Intelligent Process Automation (IPA) that utilizes state-of-the-art computer vision (CV) and other algorithmic techniques to locate, detect, and manage inventory storage logistics using label information from simple warehouse images. When used in conjunction with a recently developed robotic imaging system, our pipeline can be shown to replace the need for costly, error-prone human input to the inventory tracking system. This paper outlines the technical and practical application of IPA fueled by deep learning. The specific motivation for this project was to address a critical need of Mercedes-Benz U.S. International (MBUSI), but the techniques could be applied more generally to other inventory management contexts. We also discuss how our pipeline produces an inexpensive, efficient, and generalizable solution that provides the capability to retrieve data from an unpredictable environment, in contrast to previous approaches.","PeriodicalId":148741,"journal":{"name":"Proceedings of the 2021 ACM Southeast Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A computer vision pipeline for automatic large-scale inventory tracking\",\"authors\":\"Stephen Gregory, Utkarsh Singh, Jeffrey G. Gray, Jon Hobbs\",\"doi\":\"10.1145/3409334.3452063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and tracking inventory is one of the most important aspects of administrating any large-scale enterprise operation that involves physical goods. One of the most evident examples of such operations is automotive manufacturing, especially for servicing a global customer base. We present a software solution of Intelligent Process Automation (IPA) that utilizes state-of-the-art computer vision (CV) and other algorithmic techniques to locate, detect, and manage inventory storage logistics using label information from simple warehouse images. When used in conjunction with a recently developed robotic imaging system, our pipeline can be shown to replace the need for costly, error-prone human input to the inventory tracking system. This paper outlines the technical and practical application of IPA fueled by deep learning. The specific motivation for this project was to address a critical need of Mercedes-Benz U.S. International (MBUSI), but the techniques could be applied more generally to other inventory management contexts. We also discuss how our pipeline produces an inexpensive, efficient, and generalizable solution that provides the capability to retrieve data from an unpredictable environment, in contrast to previous approaches.\",\"PeriodicalId\":148741,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Southeast Conference\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Southeast Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409334.3452063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Southeast Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409334.3452063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

监控和跟踪库存是管理任何涉及实物商品的大型企业运营的最重要方面之一。此类操作的一个最明显的例子是汽车制造业,特别是为全球客户群提供服务。我们提出了一种智能过程自动化(IPA)的软件解决方案,它利用最先进的计算机视觉(CV)和其他算法技术,利用简单仓库图像中的标签信息来定位、检测和管理库存存储物流。当与最近开发的机器人成像系统结合使用时,我们的管道可以取代成本高昂、容易出错的人工输入库存跟踪系统。本文概述了由深度学习推动的IPA的技术和实际应用。该项目的具体动机是解决梅赛德斯-奔驰美国国际公司(MBUSI)的关键需求,但该技术可以更广泛地应用于其他库存管理环境。我们还讨论了与以前的方法相比,我们的管道如何产生廉价、高效和通用的解决方案,该解决方案提供了从不可预测的环境中检索数据的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computer vision pipeline for automatic large-scale inventory tracking
Monitoring and tracking inventory is one of the most important aspects of administrating any large-scale enterprise operation that involves physical goods. One of the most evident examples of such operations is automotive manufacturing, especially for servicing a global customer base. We present a software solution of Intelligent Process Automation (IPA) that utilizes state-of-the-art computer vision (CV) and other algorithmic techniques to locate, detect, and manage inventory storage logistics using label information from simple warehouse images. When used in conjunction with a recently developed robotic imaging system, our pipeline can be shown to replace the need for costly, error-prone human input to the inventory tracking system. This paper outlines the technical and practical application of IPA fueled by deep learning. The specific motivation for this project was to address a critical need of Mercedes-Benz U.S. International (MBUSI), but the techniques could be applied more generally to other inventory management contexts. We also discuss how our pipeline produces an inexpensive, efficient, and generalizable solution that provides the capability to retrieve data from an unpredictable environment, in contrast to previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of back-translation: a transfer learning approach to identify ambiguous software requirements A survey of wireless network simulation and/or emulation software for use in higher education Implementing a network intrusion detection system using semi-supervised support vector machine and random forest Performance evaluation of a widely used implementation of the MQTT protocol with large payloads in normal operation and under a DoS attack Benefits of combining dimensional attention and working memory for partially observable reinforcement learning problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1