使用卷积神经网络学习深度运动原语

Affan Pervez, Yuecheng Mao, Dongheui Lee
{"title":"使用卷积神经网络学习深度运动原语","authors":"Affan Pervez, Yuecheng Mao, Dongheui Lee","doi":"10.1109/HUMANOIDS.2017.8246874","DOIUrl":null,"url":null,"abstract":"Dynamic Movement Primitives (DMPs) are widely used for encoding motion data. Task parameterized DMP (TP-DMP) can adapt a learned skill to different situations. Mostly a customized vision system is used to extract task specific variables. This limits the use of such systems to real world scenarios. This paper proposes a method for combining the DMP with a Convolutional Neural Network (CNN). Our approach preserves the generalization properties associated with a DMP, while the CNN learns the task specific features from the camera images. This eliminates the need to extract the task parameters, by directly utilizing the camera image during the motion reproduction. The performance of the developed approach is demonstrated through a trash cleaning task, executed with a real robot. We also show that by using the data augmentation, the learned sweeping skill can be generalized for arbitrary objects. The experiments show the robustness of our approach for several different settings.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Learning deep movement primitives using convolutional neural networks\",\"authors\":\"Affan Pervez, Yuecheng Mao, Dongheui Lee\",\"doi\":\"10.1109/HUMANOIDS.2017.8246874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Movement Primitives (DMPs) are widely used for encoding motion data. Task parameterized DMP (TP-DMP) can adapt a learned skill to different situations. Mostly a customized vision system is used to extract task specific variables. This limits the use of such systems to real world scenarios. This paper proposes a method for combining the DMP with a Convolutional Neural Network (CNN). Our approach preserves the generalization properties associated with a DMP, while the CNN learns the task specific features from the camera images. This eliminates the need to extract the task parameters, by directly utilizing the camera image during the motion reproduction. The performance of the developed approach is demonstrated through a trash cleaning task, executed with a real robot. We also show that by using the data augmentation, the learned sweeping skill can be generalized for arbitrary objects. The experiments show the robustness of our approach for several different settings.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

动态运动原语(dmp)被广泛用于运动数据的编码。任务参数化DMP (TP-DMP)可以使学习到的技能适应不同的情况。通常使用定制的视觉系统来提取任务特定的变量。这限制了此类系统在现实世界场景中的使用。本文提出了一种将DMP与卷积神经网络(CNN)相结合的方法。我们的方法保留了与DMP相关的泛化属性,而CNN从相机图像中学习任务特定的特征。这消除了提取任务参数的需要,通过在运动再现期间直接利用相机图像。通过一个真正的机器人执行的垃圾清理任务,演示了所开发方法的性能。通过数据增强,我们还证明了学习到的扫描技巧可以推广到任意对象。实验表明,我们的方法对几种不同的设置具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning deep movement primitives using convolutional neural networks
Dynamic Movement Primitives (DMPs) are widely used for encoding motion data. Task parameterized DMP (TP-DMP) can adapt a learned skill to different situations. Mostly a customized vision system is used to extract task specific variables. This limits the use of such systems to real world scenarios. This paper proposes a method for combining the DMP with a Convolutional Neural Network (CNN). Our approach preserves the generalization properties associated with a DMP, while the CNN learns the task specific features from the camera images. This eliminates the need to extract the task parameters, by directly utilizing the camera image during the motion reproduction. The performance of the developed approach is demonstrated through a trash cleaning task, executed with a real robot. We also show that by using the data augmentation, the learned sweeping skill can be generalized for arbitrary objects. The experiments show the robustness of our approach for several different settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1