基于长短期记忆和关联规则的黄金价格预测方法

L. Boongasame, P. Viriyaphol, Kriangkrai Tassanavipas, P. Temdee
{"title":"基于长短期记忆和关联规则的黄金价格预测方法","authors":"L. Boongasame, P. Viriyaphol, Kriangkrai Tassanavipas, P. Temdee","doi":"10.13052/jmm1550-4646.1919","DOIUrl":null,"url":null,"abstract":"Since gold prices influence international economic and monetary systems, numerous studies have been conducted to forecast gold prices. Nonetheless, studies employing the linear relationship method usually fail to explain the change in the pattern of the gold price. This study introduces a new paradigm that incorporates association rules and long short-term memory (LSTM) as a nonlinear-based method. For simulation, the proposed method was analyzed with data from Yahoo Finance from January 2010 to December 2020. The association rule was used to choose features relevant to the gold spot (GS) in the US Dollar Index (DXY). The LSTM forecast the gold price with a range of hyperparameter settings. The simulation results showed that the proposed method—the LSTM with GS and DXY, or LSTM-GS-DXY—resulted in low mean absolute percentage error (MAPE) metrics. In addition, the proposed LSTM-GS-DXY system outperformed the simple moving average (SMA), weight moving average (WMA), exponential moving average (EMA), and auto-regressive integrated moving average (ARIMA).","PeriodicalId":425561,"journal":{"name":"J. Mobile Multimedia","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gold-Price Forecasting Method Using Long Short-Term Memory and the Association Rule\",\"authors\":\"L. Boongasame, P. Viriyaphol, Kriangkrai Tassanavipas, P. Temdee\",\"doi\":\"10.13052/jmm1550-4646.1919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since gold prices influence international economic and monetary systems, numerous studies have been conducted to forecast gold prices. Nonetheless, studies employing the linear relationship method usually fail to explain the change in the pattern of the gold price. This study introduces a new paradigm that incorporates association rules and long short-term memory (LSTM) as a nonlinear-based method. For simulation, the proposed method was analyzed with data from Yahoo Finance from January 2010 to December 2020. The association rule was used to choose features relevant to the gold spot (GS) in the US Dollar Index (DXY). The LSTM forecast the gold price with a range of hyperparameter settings. The simulation results showed that the proposed method—the LSTM with GS and DXY, or LSTM-GS-DXY—resulted in low mean absolute percentage error (MAPE) metrics. In addition, the proposed LSTM-GS-DXY system outperformed the simple moving average (SMA), weight moving average (WMA), exponential moving average (EMA), and auto-regressive integrated moving average (ARIMA).\",\"PeriodicalId\":425561,\"journal\":{\"name\":\"J. Mobile Multimedia\",\"volume\":\"280 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mobile Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jmm1550-4646.1919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mobile Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jmm1550-4646.1919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于黄金价格影响着国际经济和货币体系,人们进行了大量的研究来预测黄金价格。然而,采用线性关系方法的研究往往不能解释黄金价格格局的变化。本研究提出了一种结合关联规则和长短期记忆(LSTM)作为非线性基础方法的新范式。为了进行仿真,采用Yahoo Finance 2010年1月至2020年12月的数据进行分析。使用关联规则选择与美元指数(DXY)中黄金现货(GS)相关的特征。LSTM通过一系列超参数设置来预测黄金价格。仿真结果表明,该方法(LSTM-GS-DXY)具有较低的平均绝对百分比误差(MAPE)指标。此外,所提出的LSTM-GS-DXY系统优于简单移动平均(SMA)、加权移动平均(WMA)、指数移动平均(EMA)和自回归综合移动平均(ARIMA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gold-Price Forecasting Method Using Long Short-Term Memory and the Association Rule
Since gold prices influence international economic and monetary systems, numerous studies have been conducted to forecast gold prices. Nonetheless, studies employing the linear relationship method usually fail to explain the change in the pattern of the gold price. This study introduces a new paradigm that incorporates association rules and long short-term memory (LSTM) as a nonlinear-based method. For simulation, the proposed method was analyzed with data from Yahoo Finance from January 2010 to December 2020. The association rule was used to choose features relevant to the gold spot (GS) in the US Dollar Index (DXY). The LSTM forecast the gold price with a range of hyperparameter settings. The simulation results showed that the proposed method—the LSTM with GS and DXY, or LSTM-GS-DXY—resulted in low mean absolute percentage error (MAPE) metrics. In addition, the proposed LSTM-GS-DXY system outperformed the simple moving average (SMA), weight moving average (WMA), exponential moving average (EMA), and auto-regressive integrated moving average (ARIMA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Disruptive Innovation Potential and Business Case Investment Sensitivity of Open RAN Live Streaming Contents Influencing Game Playing Behavior Among Thailand Gamers Hyperledger Fabric-based Reliable Personal Health Information Sharing Model A Conceptual Model of Personalized Virtual Reality Trail Running Gamification Design Protein Prediction using Dictionary Based Regression Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1