基于变换的文本情感检测双向编码器表示

A. J, E. Cambria, T. Trueman
{"title":"基于变换的文本情感检测双向编码器表示","authors":"A. J, E. Cambria, T. Trueman","doi":"10.1109/SSCI50451.2021.9660152","DOIUrl":null,"url":null,"abstract":"Social media influences internet users to share their sentiments, feelings, or emotions about entities. In particular, sentiment analysis classifies a text into positive, negative, or neutral. It does not capture the state of mind of an individual like happiness, anger, and fear. Therefore, emotion detection plays an important role in user-generated content for capturing the state of mind. Moreover, researchers adopted traditional machine learning and deep learning models to capture emotions from the text. Recently, transformers-based architectures achieve better results in various natural language processing tasks. Therefore, we propose a transformer-based emotion detection system, which uses context-dependent features and a one-cycle learning rate policy for a better understanding of emotions from the text. We evaluate the proposed emotion detection model using error matrix, learning curve, precision, recall, F1-score, and their micro and macro averages. Our results indicate that the system achieves a 6 % accuracy over existing models.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transformer-Based Bidirectional Encoder Representations for Emotion Detection from Text\",\"authors\":\"A. J, E. Cambria, T. Trueman\",\"doi\":\"10.1109/SSCI50451.2021.9660152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media influences internet users to share their sentiments, feelings, or emotions about entities. In particular, sentiment analysis classifies a text into positive, negative, or neutral. It does not capture the state of mind of an individual like happiness, anger, and fear. Therefore, emotion detection plays an important role in user-generated content for capturing the state of mind. Moreover, researchers adopted traditional machine learning and deep learning models to capture emotions from the text. Recently, transformers-based architectures achieve better results in various natural language processing tasks. Therefore, we propose a transformer-based emotion detection system, which uses context-dependent features and a one-cycle learning rate policy for a better understanding of emotions from the text. We evaluate the proposed emotion detection model using error matrix, learning curve, precision, recall, F1-score, and their micro and macro averages. Our results indicate that the system achieves a 6 % accuracy over existing models.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

社交媒体影响互联网用户分享他们对实体的看法、感受或情绪。特别地,情感分析将文本分为积极、消极或中性。它不能捕捉到一个人的精神状态,比如快乐、愤怒和恐惧。因此,情绪检测在用户生成内容中扮演着重要的角色,可以捕捉用户的心理状态。此外,研究人员采用传统的机器学习和深度学习模型从文本中捕捉情感。近年来,基于变压器的体系结构在各种自然语言处理任务中取得了较好的效果。因此,我们提出了一种基于转换器的情感检测系统,该系统使用上下文相关特征和单周期学习率策略来更好地从文本中理解情感。我们使用误差矩阵、学习曲线、精度、召回率、f1分数及其微观和宏观平均值来评估所提出的情绪检测模型。我们的结果表明,该系统达到了6%的精度比现有的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformer-Based Bidirectional Encoder Representations for Emotion Detection from Text
Social media influences internet users to share their sentiments, feelings, or emotions about entities. In particular, sentiment analysis classifies a text into positive, negative, or neutral. It does not capture the state of mind of an individual like happiness, anger, and fear. Therefore, emotion detection plays an important role in user-generated content for capturing the state of mind. Moreover, researchers adopted traditional machine learning and deep learning models to capture emotions from the text. Recently, transformers-based architectures achieve better results in various natural language processing tasks. Therefore, we propose a transformer-based emotion detection system, which uses context-dependent features and a one-cycle learning rate policy for a better understanding of emotions from the text. We evaluate the proposed emotion detection model using error matrix, learning curve, precision, recall, F1-score, and their micro and macro averages. Our results indicate that the system achieves a 6 % accuracy over existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1