P. Francis, A. Terao, B. Gentinne, D. Flandre, J. Colinge
{"title":"高温应用的SOI技术","authors":"P. Francis, A. Terao, B. Gentinne, D. Flandre, J. Colinge","doi":"10.1109/IEDM.1992.307590","DOIUrl":null,"url":null,"abstract":"This work investigates and demonstrates the potential of Silicon-On-Insulator (SOI) MOSFETs for high-temperature analog and digital applications. The small area of junctions in SOI/MOS devices reduces the high-temperature leakage currents by as much as 3 to 4 orders of magnitude over regular (bulk) MOS devices. The threshold voltage variation with temperature is 2 to 3 times smaller than in bulk devices, and the output conductance of SOI MOSFETs actually improves as temperature is increased. These properties enable the fabrication of digital and analog SOI/CMOS circuits operating up to over 300 degrees C with little performance degradation. This paper describes the high-temperature performances of small SOI/CMOS circuit blocks such as static and dynamic logic gates, frequency dividers, and operational amplifiers.<<ETX>>","PeriodicalId":287098,"journal":{"name":"1992 International Technical Digest on Electron Devices Meeting","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"SOI technology for high-temperature applications\",\"authors\":\"P. Francis, A. Terao, B. Gentinne, D. Flandre, J. Colinge\",\"doi\":\"10.1109/IEDM.1992.307590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates and demonstrates the potential of Silicon-On-Insulator (SOI) MOSFETs for high-temperature analog and digital applications. The small area of junctions in SOI/MOS devices reduces the high-temperature leakage currents by as much as 3 to 4 orders of magnitude over regular (bulk) MOS devices. The threshold voltage variation with temperature is 2 to 3 times smaller than in bulk devices, and the output conductance of SOI MOSFETs actually improves as temperature is increased. These properties enable the fabrication of digital and analog SOI/CMOS circuits operating up to over 300 degrees C with little performance degradation. This paper describes the high-temperature performances of small SOI/CMOS circuit blocks such as static and dynamic logic gates, frequency dividers, and operational amplifiers.<<ETX>>\",\"PeriodicalId\":287098,\"journal\":{\"name\":\"1992 International Technical Digest on Electron Devices Meeting\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 International Technical Digest on Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.1992.307590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 International Technical Digest on Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.1992.307590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work investigates and demonstrates the potential of Silicon-On-Insulator (SOI) MOSFETs for high-temperature analog and digital applications. The small area of junctions in SOI/MOS devices reduces the high-temperature leakage currents by as much as 3 to 4 orders of magnitude over regular (bulk) MOS devices. The threshold voltage variation with temperature is 2 to 3 times smaller than in bulk devices, and the output conductance of SOI MOSFETs actually improves as temperature is increased. These properties enable the fabrication of digital and analog SOI/CMOS circuits operating up to over 300 degrees C with little performance degradation. This paper describes the high-temperature performances of small SOI/CMOS circuit blocks such as static and dynamic logic gates, frequency dividers, and operational amplifiers.<>