基于深度q -网络的光伏系统最大功率点跟踪

Kangshi Wang, Dou Hong, Jieming Ma, K. Man, Kaizhu Huang, Xiaowei Huang
{"title":"基于深度q -网络的光伏系统最大功率点跟踪","authors":"Kangshi Wang, Dou Hong, Jieming Ma, K. Man, Kaizhu Huang, Xiaowei Huang","doi":"10.1109/INDIN45582.2020.9442100","DOIUrl":null,"url":null,"abstract":"A photovoltaic (PV) generator exhibits nonlinear current-voltage characteristics and its maximum power point varies with incident atmospheric conditions. Therefore, maximum power point tracking (MPPT) control is required to maximize the output power of the PV generator. In this paper, deep Q-network based reinforcement learning strategy is proposed to optimize MPPT process for the photovoltaic system. The proposed system uses a novel control method which introduces agent to interface with the environment and finally gets the strategy of maximum reward accordingly. Simulations and experiments show the feasibility and effectiveness of the proposed system. Compared with the traditional perturb and observe (P&O) and incremental conductance (InC) methods, this method prominently saves tracking steps.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Power Point Tracking of Photovoltaic Systems Using Deep Q-networks\",\"authors\":\"Kangshi Wang, Dou Hong, Jieming Ma, K. Man, Kaizhu Huang, Xiaowei Huang\",\"doi\":\"10.1109/INDIN45582.2020.9442100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A photovoltaic (PV) generator exhibits nonlinear current-voltage characteristics and its maximum power point varies with incident atmospheric conditions. Therefore, maximum power point tracking (MPPT) control is required to maximize the output power of the PV generator. In this paper, deep Q-network based reinforcement learning strategy is proposed to optimize MPPT process for the photovoltaic system. The proposed system uses a novel control method which introduces agent to interface with the environment and finally gets the strategy of maximum reward accordingly. Simulations and experiments show the feasibility and effectiveness of the proposed system. Compared with the traditional perturb and observe (P&O) and incremental conductance (InC) methods, this method prominently saves tracking steps.\",\"PeriodicalId\":185948,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45582.2020.9442100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光伏发电机具有非线性的电流电压特性,其最大功率点随入射大气条件的变化而变化。因此,需要进行最大功率点跟踪(MPPT)控制,使光伏发电机组的输出功率最大化。本文提出了基于深度q网络的强化学习策略来优化光伏系统的MPPT过程。该系统采用了一种新颖的控制方法,引入智能体与环境交互,最终得到相应的最大奖励策略。仿真和实验验证了该系统的可行性和有效性。与传统的扰动观测(P&O)和增量电导(InC)方法相比,该方法显著节省了跟踪步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum Power Point Tracking of Photovoltaic Systems Using Deep Q-networks
A photovoltaic (PV) generator exhibits nonlinear current-voltage characteristics and its maximum power point varies with incident atmospheric conditions. Therefore, maximum power point tracking (MPPT) control is required to maximize the output power of the PV generator. In this paper, deep Q-network based reinforcement learning strategy is proposed to optimize MPPT process for the photovoltaic system. The proposed system uses a novel control method which introduces agent to interface with the environment and finally gets the strategy of maximum reward accordingly. Simulations and experiments show the feasibility and effectiveness of the proposed system. Compared with the traditional perturb and observe (P&O) and incremental conductance (InC) methods, this method prominently saves tracking steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A GWO-AFSA-SVM Model-Based Fault Pattern Recognition for the Power Equipment of Autonomous vessels System and Software Engineering, Runtime Intelligence Sentiment Analysis of Chinese E-commerce Reviews Based on BERT IoT - and blockchain-enabled credible scheduling in cloud manufacturing: a systemic framework Industry Digitalisation, Digital Twins in Industrial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1