{"title":"最小结构ART神经网络及燃气轮机故障诊断应用","authors":"Qingyang Xu","doi":"10.2174/1874155X01610010013","DOIUrl":null,"url":null,"abstract":"Adaptive Resonance Theory (ART) model is a special neural network based on unsupervised learning which simulates the cognitive process of human. However, ART1 can be only used for binary input, and ART2 can be used for binary and analog vectors which have complex structures and complicated calculations. In order to improve the real-time performance of the network, a minimal structural ART is proposed which combines the merits of the two models by subsuming the bottom-up and top-down weight. The vector similarity test is used instead of vigilance test. Therefore, this algorithm has a simple structure like ART1 and good performance as ART2 which can be used for both binary and analog vector classification, and it has a high efficiency. Finally, a gas turbine fault diagnosis experiment exhibits the validity of the new network.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimal Structural ART Neural Network and Fault Diagnosis Application of Gas Turbine\",\"authors\":\"Qingyang Xu\",\"doi\":\"10.2174/1874155X01610010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive Resonance Theory (ART) model is a special neural network based on unsupervised learning which simulates the cognitive process of human. However, ART1 can be only used for binary input, and ART2 can be used for binary and analog vectors which have complex structures and complicated calculations. In order to improve the real-time performance of the network, a minimal structural ART is proposed which combines the merits of the two models by subsuming the bottom-up and top-down weight. The vector similarity test is used instead of vigilance test. Therefore, this algorithm has a simple structure like ART1 and good performance as ART2 which can be used for both binary and analog vector classification, and it has a high efficiency. Finally, a gas turbine fault diagnosis experiment exhibits the validity of the new network.\",\"PeriodicalId\":267392,\"journal\":{\"name\":\"The Open Mechanical Engineering Journal\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Mechanical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874155X01610010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01610010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimal Structural ART Neural Network and Fault Diagnosis Application of Gas Turbine
Adaptive Resonance Theory (ART) model is a special neural network based on unsupervised learning which simulates the cognitive process of human. However, ART1 can be only used for binary input, and ART2 can be used for binary and analog vectors which have complex structures and complicated calculations. In order to improve the real-time performance of the network, a minimal structural ART is proposed which combines the merits of the two models by subsuming the bottom-up and top-down weight. The vector similarity test is used instead of vigilance test. Therefore, this algorithm has a simple structure like ART1 and good performance as ART2 which can be used for both binary and analog vector classification, and it has a high efficiency. Finally, a gas turbine fault diagnosis experiment exhibits the validity of the new network.