N. Sanil, Pasumarthy Ankith Naga Venkat, Mohammed Riyaz Ahmed
{"title":"卫星通信物联网多波段微带天线的设计与性能分析","authors":"N. Sanil, Pasumarthy Ankith Naga Venkat, Mohammed Riyaz Ahmed","doi":"10.1109/ICGCIOT.2018.8753037","DOIUrl":null,"url":null,"abstract":"Modern portable devices with wireless communication capability are being deployed every day in the industry. With embedded sensors, connected devices the innovation is leading to industry 4.0. While lack of network may be a major concern in the proliferation of IoT, the need of terrestrial network can effectively be overcome by exploiting the potential of well-established satellite communication. Here we propose a multi-band circularly polarized microstrip antenna which operates at microwave (Super High Frequency) frequencies of 5.8 GHz, 6.76 GHz, and 8.4 GHz with a fractional bandwidth of 170 MHz, 335 MHz, and 560 MHz respectively. First two frequencies are related to C-band while the later lies in X-band. The importance of various performance parameters, of the designed antenna, is analyzed. The investigations of current work will potentially open a market to sell additional facilities in GEOstationary satellites in C-, Ku- and Ka-band. The advent of using satellite for IoT applications will open new doors to innovation leading to the new constellation (of satellites) dedicated to IOT applications.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Design and Performance Analysis of Multiband Microstrip Antennas for IoT applications via Satellite Communication\",\"authors\":\"N. Sanil, Pasumarthy Ankith Naga Venkat, Mohammed Riyaz Ahmed\",\"doi\":\"10.1109/ICGCIOT.2018.8753037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern portable devices with wireless communication capability are being deployed every day in the industry. With embedded sensors, connected devices the innovation is leading to industry 4.0. While lack of network may be a major concern in the proliferation of IoT, the need of terrestrial network can effectively be overcome by exploiting the potential of well-established satellite communication. Here we propose a multi-band circularly polarized microstrip antenna which operates at microwave (Super High Frequency) frequencies of 5.8 GHz, 6.76 GHz, and 8.4 GHz with a fractional bandwidth of 170 MHz, 335 MHz, and 560 MHz respectively. First two frequencies are related to C-band while the later lies in X-band. The importance of various performance parameters, of the designed antenna, is analyzed. The investigations of current work will potentially open a market to sell additional facilities in GEOstationary satellites in C-, Ku- and Ka-band. The advent of using satellite for IoT applications will open new doors to innovation leading to the new constellation (of satellites) dedicated to IOT applications.\",\"PeriodicalId\":269682,\"journal\":{\"name\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGCIOT.2018.8753037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Performance Analysis of Multiband Microstrip Antennas for IoT applications via Satellite Communication
Modern portable devices with wireless communication capability are being deployed every day in the industry. With embedded sensors, connected devices the innovation is leading to industry 4.0. While lack of network may be a major concern in the proliferation of IoT, the need of terrestrial network can effectively be overcome by exploiting the potential of well-established satellite communication. Here we propose a multi-band circularly polarized microstrip antenna which operates at microwave (Super High Frequency) frequencies of 5.8 GHz, 6.76 GHz, and 8.4 GHz with a fractional bandwidth of 170 MHz, 335 MHz, and 560 MHz respectively. First two frequencies are related to C-band while the later lies in X-band. The importance of various performance parameters, of the designed antenna, is analyzed. The investigations of current work will potentially open a market to sell additional facilities in GEOstationary satellites in C-, Ku- and Ka-band. The advent of using satellite for IoT applications will open new doors to innovation leading to the new constellation (of satellites) dedicated to IOT applications.