实现智能手机用户语境行为的自动提取

A. Jaffal, B. L. Grand
{"title":"实现智能手机用户语境行为的自动提取","authors":"A. Jaffal, B. L. Grand","doi":"10.1109/RCIS.2016.7549334","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for automatically extracting smartphone users' contextual behaviors from the digital traces collected during their interactions with their devices. Our goal is in particular to understand the impact of users' context (e.g., location, time, environment, etc.) on the applications they run on their smartphones. We propose a methodology to analyze digital traces and to automatically identify the significant information that characterizes users' behavlors. In earlier work, we have used Formal Concept Analysis and Galois lattices to extract relevant knowledge from heterogeneous and complex contextual data; however, the interpretation of the obtained Galois lattices was performed manually. In this article, we aim at automating this interpretation process, through the provision of original metrics. Therefore our methodology returns relevant information without requiring any expertise in data analysis. We illustrate our contribution on real data collected from volunteer users.","PeriodicalId":344289,"journal":{"name":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards an automatic extraction of smartphone users' contextual behaviors\",\"authors\":\"A. Jaffal, B. L. Grand\",\"doi\":\"10.1109/RCIS.2016.7549334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for automatically extracting smartphone users' contextual behaviors from the digital traces collected during their interactions with their devices. Our goal is in particular to understand the impact of users' context (e.g., location, time, environment, etc.) on the applications they run on their smartphones. We propose a methodology to analyze digital traces and to automatically identify the significant information that characterizes users' behavlors. In earlier work, we have used Formal Concept Analysis and Galois lattices to extract relevant knowledge from heterogeneous and complex contextual data; however, the interpretation of the obtained Galois lattices was performed manually. In this article, we aim at automating this interpretation process, through the provision of original metrics. Therefore our methodology returns relevant information without requiring any expertise in data analysis. We illustrate our contribution on real data collected from volunteer users.\",\"PeriodicalId\":344289,\"journal\":{\"name\":\"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCIS.2016.7549334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2016.7549334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从智能手机用户与设备交互过程中收集的数字痕迹中自动提取其上下文行为的新方法。我们的目标是了解用户的上下文(例如,位置,时间,环境等)对他们在智能手机上运行的应用程序的影响。我们提出了一种方法来分析数字痕迹,并自动识别表征用户行为的重要信息。在早期的工作中,我们使用形式概念分析和伽罗瓦格从异构和复杂的上下文数据中提取相关知识;然而,获得的伽罗瓦格的解释是手工进行的。在本文中,我们的目标是通过提供原始度量来自动化这个解释过程。因此,我们的方法返回相关信息,而不需要任何专业知识的数据分析。我们用从志愿者用户那里收集的真实数据来说明我们的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards an automatic extraction of smartphone users' contextual behaviors
This paper presents a new method for automatically extracting smartphone users' contextual behaviors from the digital traces collected during their interactions with their devices. Our goal is in particular to understand the impact of users' context (e.g., location, time, environment, etc.) on the applications they run on their smartphones. We propose a methodology to analyze digital traces and to automatically identify the significant information that characterizes users' behavlors. In earlier work, we have used Formal Concept Analysis and Galois lattices to extract relevant knowledge from heterogeneous and complex contextual data; however, the interpretation of the obtained Galois lattices was performed manually. In this article, we aim at automating this interpretation process, through the provision of original metrics. Therefore our methodology returns relevant information without requiring any expertise in data analysis. We illustrate our contribution on real data collected from volunteer users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy extension of SPARQL for querying gradual RDF data Incorporating privacy patterns into semi-automatic business process derivation Conceptual schema of miRNA's expression: Using efficient information systems practices to manage and analyse data about miRNA expression studies in breast cancer A generic architecture for spatial crowdsourcing Increasing secondary diagnosis encoding quality using data mining techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1