基于数据驱动的城市信息模型演化趋势测度方法

Guangdong Wu, Handong Tang, Yichuan Deng, Hengqin Wu, Chaoran Lin
{"title":"基于数据驱动的城市信息模型演化趋势测度方法","authors":"Guangdong Wu, Handong Tang, Yichuan Deng, Hengqin Wu, Chaoran Lin","doi":"10.56578/judm010102","DOIUrl":null,"url":null,"abstract":"This work aims to reveal the current status of the city information modeling (CIM) from massive patent data, using the latent Dirichlet allocation (LDA) model, and quantify the evolution trends of future topics by the Hidden Markov Model (HMM). The results show that the CIM technologies can be divided into 17 topics. At the present stage, the technologies related to the Internet of things (IOT), big data and data management are the focus of the research and development (R&D) of CIM patents. Compared with the software technology, further development is needed for the hardware technology supporting CIM, particularly in terms of information acquisition (cameras and sensors), storage, and information transmitters. This study deepens the understanding of the CIM-related technical categories, and clarifies the direction of the development and evolution of CIM technology, providing a strong support to decision-makers in urban management.","PeriodicalId":439777,"journal":{"name":"Journal of Urban Development and Management","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Data Driven Approach to Measure Evolution Trends of City Information Modeling\",\"authors\":\"Guangdong Wu, Handong Tang, Yichuan Deng, Hengqin Wu, Chaoran Lin\",\"doi\":\"10.56578/judm010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to reveal the current status of the city information modeling (CIM) from massive patent data, using the latent Dirichlet allocation (LDA) model, and quantify the evolution trends of future topics by the Hidden Markov Model (HMM). The results show that the CIM technologies can be divided into 17 topics. At the present stage, the technologies related to the Internet of things (IOT), big data and data management are the focus of the research and development (R&D) of CIM patents. Compared with the software technology, further development is needed for the hardware technology supporting CIM, particularly in terms of information acquisition (cameras and sensors), storage, and information transmitters. This study deepens the understanding of the CIM-related technical categories, and clarifies the direction of the development and evolution of CIM technology, providing a strong support to decision-makers in urban management.\",\"PeriodicalId\":439777,\"journal\":{\"name\":\"Journal of Urban Development and Management\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban Development and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56578/judm010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Development and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56578/judm010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在利用潜在狄利克雷分配(latent Dirichlet allocation, LDA)模型从海量专利数据中揭示城市信息建模(CIM)的现状,并利用隐马尔可夫模型(Hidden Markov model, HMM)量化未来主题的演变趋势。结果表明,CIM技术可分为17个主题。现阶段,与物联网(IOT)、大数据、数据管理相关的技术是CIM专利研发的重点。与软件技术相比,支持CIM的硬件技术需要进一步发展,特别是在信息获取(相机和传感器)、存储和信息传输方面。本研究加深了对CIM相关技术类别的认识,明确了CIM技术的发展和演变方向,为城市管理的决策者提供了有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Data Driven Approach to Measure Evolution Trends of City Information Modeling
This work aims to reveal the current status of the city information modeling (CIM) from massive patent data, using the latent Dirichlet allocation (LDA) model, and quantify the evolution trends of future topics by the Hidden Markov Model (HMM). The results show that the CIM technologies can be divided into 17 topics. At the present stage, the technologies related to the Internet of things (IOT), big data and data management are the focus of the research and development (R&D) of CIM patents. Compared with the software technology, further development is needed for the hardware technology supporting CIM, particularly in terms of information acquisition (cameras and sensors), storage, and information transmitters. This study deepens the understanding of the CIM-related technical categories, and clarifies the direction of the development and evolution of CIM technology, providing a strong support to decision-makers in urban management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Convolutional Neural Network-Bidirectional Long Short-Term Memory-Attention Mechanism Model for Enhanced Highway Traffic Flow Prediction Evaluating Sustainable Urban Development Strategies through Spherical CRITIC-WASPAS Analysis Spatio-Temporal Dynamics and Haze Agglomeration Analysis in the Beijing-Tianjin-Hebei Region: A WOA-LSTM Approach Human Resource Dynamics in Urban Crowd Logistics: A Comprehensive Analysis Enhancing Public Health Through Sustainable Urban Design: An Examination of Transportation and Green Space Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1