基于μPMU的配电系统振荡模态识别proony与ARMA方法的比较

Ping Ling, Zhixiong Shi, Jing Zhang, Xiangyu Wu, Yin Xu, Jinghan He, Jinli Wang
{"title":"基于μPMU的配电系统振荡模态识别proony与ARMA方法的比较","authors":"Ping Ling, Zhixiong Shi, Jing Zhang, Xiangyu Wu, Yin Xu, Jinghan He, Jinli Wang","doi":"10.1109/CIEEC.2018.8745901","DOIUrl":null,"url":null,"abstract":"Prony method and auto regressive moving average (ARMA) method are two typical methods used in the low-frequency oscillation mode identification of large-scale power system. This paper applies the two methods to distribution systems with multiple DGs to identify oscillation modes. The applicability of the methods to different signals is accessed by employing them to ringdown and ambient signals simulated from a 4-DG islanded distribution system and comparing to the eigenvalues calculated by eigen-analysis of the system’s small-signal model. The results indicate that the ARMA method has better applicability in this situation while Prony method is simpler to implement in case of ringdown signals.","PeriodicalId":329285,"journal":{"name":"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Prony and ARMA Methods for Oscillation Mode Identification in Distribution Systems Based on μPMU\",\"authors\":\"Ping Ling, Zhixiong Shi, Jing Zhang, Xiangyu Wu, Yin Xu, Jinghan He, Jinli Wang\",\"doi\":\"10.1109/CIEEC.2018.8745901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prony method and auto regressive moving average (ARMA) method are two typical methods used in the low-frequency oscillation mode identification of large-scale power system. This paper applies the two methods to distribution systems with multiple DGs to identify oscillation modes. The applicability of the methods to different signals is accessed by employing them to ringdown and ambient signals simulated from a 4-DG islanded distribution system and comparing to the eigenvalues calculated by eigen-analysis of the system’s small-signal model. The results indicate that the ARMA method has better applicability in this situation while Prony method is simpler to implement in case of ringdown signals.\",\"PeriodicalId\":329285,\"journal\":{\"name\":\"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEEC.2018.8745901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd International Electrical and Energy Conference (CIEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEEC.2018.8745901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

proony法和自回归移动平均法(ARMA)是大型电力系统低频振荡模态识别的两种典型方法。本文将这两种方法应用于具有多个dg的配电系统的振荡模态辨识。通过对4-DG孤岛配电系统的环振信号和环境信号进行模拟,并与系统小信号模型本征分析计算的本征值进行比较,验证了该方法对不同信号的适用性。结果表明,在这种情况下,ARMA方法具有更好的适用性,而Prony方法更易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Prony and ARMA Methods for Oscillation Mode Identification in Distribution Systems Based on μPMU
Prony method and auto regressive moving average (ARMA) method are two typical methods used in the low-frequency oscillation mode identification of large-scale power system. This paper applies the two methods to distribution systems with multiple DGs to identify oscillation modes. The applicability of the methods to different signals is accessed by employing them to ringdown and ambient signals simulated from a 4-DG islanded distribution system and comparing to the eigenvalues calculated by eigen-analysis of the system’s small-signal model. The results indicate that the ARMA method has better applicability in this situation while Prony method is simpler to implement in case of ringdown signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum reflux power control of bidirectional DC-DC converter based on dual phase shifting A Wind Speed Simulation Approach Based on Markov Sequence Model and Archimedean Copula Augmented State Estimation Method for Fault Location Based on On-line Parameter Identification of PMU Measurement Data Service Restoration Using Different Types of DGs Considering Dynamic Characteristics Comparison and Data Conversion of PSD-BPA and PSS/NETOMAC Steady and Dynamic Models For Power Flow and Transient Stability Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1