基于热电路和支持向量机的变压器顶油温度组合建模

Xiaowu Qi, Kejun Li, Jingshan Wang, Kaiqi Sun
{"title":"基于热电路和支持向量机的变压器顶油温度组合建模","authors":"Xiaowu Qi, Kejun Li, Jingshan Wang, Kaiqi Sun","doi":"10.1109/APPEEC.2016.7779827","DOIUrl":null,"url":null,"abstract":"Increasing accuracy of predicting the transformer top-oil temperature (TOT) and winding hot-spot temperature (HST) is essential to improving the utilization of transformer. This paper presents a combination model to improve TOT prediction accuracy. The main feature of this model is its combination of both model-driven model's and data-driven model's advantages. First, an available thermal circuit is utilized to predict the TOT roughly; second, a data-driven model based on support vector machine (SVM) is established to approximate the thermal circuit prediction error; and finally, the SVM is utilized to correct prediction results of the thermal circuit. The proposed model is tested on a 200-kVA distribution transformer and the obtained results are compared with existing thermal circuit model and data-driven model. The analysis result demonstrates the validity and accuracy of the combination model.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transformer top-oil temperature combination modeling based on thermal circuit and support vector machine\",\"authors\":\"Xiaowu Qi, Kejun Li, Jingshan Wang, Kaiqi Sun\",\"doi\":\"10.1109/APPEEC.2016.7779827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing accuracy of predicting the transformer top-oil temperature (TOT) and winding hot-spot temperature (HST) is essential to improving the utilization of transformer. This paper presents a combination model to improve TOT prediction accuracy. The main feature of this model is its combination of both model-driven model's and data-driven model's advantages. First, an available thermal circuit is utilized to predict the TOT roughly; second, a data-driven model based on support vector machine (SVM) is established to approximate the thermal circuit prediction error; and finally, the SVM is utilized to correct prediction results of the thermal circuit. The proposed model is tested on a 200-kVA distribution transformer and the obtained results are compared with existing thermal circuit model and data-driven model. The analysis result demonstrates the validity and accuracy of the combination model.\",\"PeriodicalId\":117485,\"journal\":{\"name\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2016.7779827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提高变压器顶油温度(TOT)和绕组热点温度(HST)的预测精度对提高变压器的利用率至关重要。本文提出了一种提高TOT预测精度的组合模型。该模型的主要特点是结合了模型驱动模型和数据驱动模型的优点。首先,利用可用热电路对TOT进行粗略预测;其次,建立基于支持向量机(SVM)的数据驱动模型,逼近热电路预测误差;最后利用支持向量机对热电路的预测结果进行校正。该模型在一台200kva配电变压器上进行了试验,并与现有热回路模型和数据驱动模型进行了比较。分析结果验证了组合模型的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformer top-oil temperature combination modeling based on thermal circuit and support vector machine
Increasing accuracy of predicting the transformer top-oil temperature (TOT) and winding hot-spot temperature (HST) is essential to improving the utilization of transformer. This paper presents a combination model to improve TOT prediction accuracy. The main feature of this model is its combination of both model-driven model's and data-driven model's advantages. First, an available thermal circuit is utilized to predict the TOT roughly; second, a data-driven model based on support vector machine (SVM) is established to approximate the thermal circuit prediction error; and finally, the SVM is utilized to correct prediction results of the thermal circuit. The proposed model is tested on a 200-kVA distribution transformer and the obtained results are compared with existing thermal circuit model and data-driven model. The analysis result demonstrates the validity and accuracy of the combination model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric Vehicle charging management algorithm for a UK low-voltage residential distribution network An optimization model of EVs charging and discharging for power system demand leveling A circuit approach for the propagation analysis of voltage unbalance emission in power systems A novel high-power AC/AC modular multilevel converter in Y configuration and its control strategy Comprehensive optimization for power system with multiple HVDC infeed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1