基于CNN-BiGRU模型的法律判决预测研究

Chenlu Wang, Xiaoning Jin
{"title":"基于CNN-BiGRU模型的法律判决预测研究","authors":"Chenlu Wang, Xiaoning Jin","doi":"10.1145/3404555.3404573","DOIUrl":null,"url":null,"abstract":"As the cases exploded, leading legal judgment prediction becomes a promising application of artificial intelligence techniques in the legal field. The goal of legal judgment prediction is to predict the judgment results based on the facts information of a case. However, the classifier of the traditional method has poor accuracy performance and cost large computational time. The commonly used deep learning models are CNN and RNN. In this paper, CNN-BiGRU was established and analyzed, which combined the good extraction ability of CNN for local feature information and RNN for long-term dependencies information of the text. Compared with the CAIL 2018 dataset, the prediction accuracy of the charges, law articles and the terms of penalty are 94.8%, 93.6%, and 73.4%, respectively. Results showed that CNN-BiGRU has a higher prediction accuracy than CNN or RNN alone and a good training efficiency over baselines. The effectiveness and practicability of this model are validated.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Prediction of Legal Judgments Based on the CNN-BiGRU Model\",\"authors\":\"Chenlu Wang, Xiaoning Jin\",\"doi\":\"10.1145/3404555.3404573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the cases exploded, leading legal judgment prediction becomes a promising application of artificial intelligence techniques in the legal field. The goal of legal judgment prediction is to predict the judgment results based on the facts information of a case. However, the classifier of the traditional method has poor accuracy performance and cost large computational time. The commonly used deep learning models are CNN and RNN. In this paper, CNN-BiGRU was established and analyzed, which combined the good extraction ability of CNN for local feature information and RNN for long-term dependencies information of the text. Compared with the CAIL 2018 dataset, the prediction accuracy of the charges, law articles and the terms of penalty are 94.8%, 93.6%, and 73.4%, respectively. Results showed that CNN-BiGRU has a higher prediction accuracy than CNN or RNN alone and a good training efficiency over baselines. The effectiveness and practicability of this model are validated.\",\"PeriodicalId\":220526,\"journal\":{\"name\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404555.3404573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着案件的爆炸式增长,领先的法律判决预测成为人工智能技术在法律领域的一个很有前景的应用。法律判决预测的目标是根据案件的事实信息对判决结果进行预测。然而,传统方法的分类器准确率差,计算时间长。常用的深度学习模型有CNN和RNN。本文建立并分析了CNN- bigru,该算法结合了CNN对文本局部特征信息的良好提取能力和RNN对文本长期依赖信息的提取能力。与CAIL 2018数据集相比,收费、法律条款和处罚条款的预测准确率分别为94.8%、93.6%和73.4%。结果表明,CNN- bigru比单独使用CNN或RNN具有更高的预测精度,并且在基线上具有良好的训练效率。验证了该模型的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Prediction of Legal Judgments Based on the CNN-BiGRU Model
As the cases exploded, leading legal judgment prediction becomes a promising application of artificial intelligence techniques in the legal field. The goal of legal judgment prediction is to predict the judgment results based on the facts information of a case. However, the classifier of the traditional method has poor accuracy performance and cost large computational time. The commonly used deep learning models are CNN and RNN. In this paper, CNN-BiGRU was established and analyzed, which combined the good extraction ability of CNN for local feature information and RNN for long-term dependencies information of the text. Compared with the CAIL 2018 dataset, the prediction accuracy of the charges, law articles and the terms of penalty are 94.8%, 93.6%, and 73.4%, respectively. Results showed that CNN-BiGRU has a higher prediction accuracy than CNN or RNN alone and a good training efficiency over baselines. The effectiveness and practicability of this model are validated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1