基于特征约简和聚类的软件缺陷预测混合分类方法

Bhagyesh Desai, Er. Nitika Kapoor
{"title":"基于特征约简和聚类的软件缺陷预测混合分类方法","authors":"Bhagyesh Desai, Er. Nitika Kapoor","doi":"10.1109/GCAT52182.2021.9587763","DOIUrl":null,"url":null,"abstract":"Software product refers to the software which is developed for a specific requirement. Simultaneously, engineering deals with the development of product using explicit technical fundamentals and methods. The software defect can be predicted in diverse stages in which data is utilized as input and pre-processed, attributes are extracted, and classification is performed. This research work makes the implementation of several classifiers in order to predict the software defect. These classifiers are GNB (gaussian naive bayes), Bernoulli NB, RF (random forest) and MLP (multilayer perceptron) which are employed with the objective of forecasting the software defect. The performance of the software defect is enhanced by developing an ensemble classifier. In the introduced ensemble classifier, the PCA (Principal Component Analysis) algorithm is integrated with class balancing. Python is executed to implement the introduced model. Diverse metrics are considered to analyze the results concerning accuracy, precision and recall.","PeriodicalId":436231,"journal":{"name":"2021 2nd Global Conference for Advancement in Technology (GCAT)","volume":"53 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Classification Approach for Software Defect Prediction with Feature Reduction and Clustering\",\"authors\":\"Bhagyesh Desai, Er. Nitika Kapoor\",\"doi\":\"10.1109/GCAT52182.2021.9587763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software product refers to the software which is developed for a specific requirement. Simultaneously, engineering deals with the development of product using explicit technical fundamentals and methods. The software defect can be predicted in diverse stages in which data is utilized as input and pre-processed, attributes are extracted, and classification is performed. This research work makes the implementation of several classifiers in order to predict the software defect. These classifiers are GNB (gaussian naive bayes), Bernoulli NB, RF (random forest) and MLP (multilayer perceptron) which are employed with the objective of forecasting the software defect. The performance of the software defect is enhanced by developing an ensemble classifier. In the introduced ensemble classifier, the PCA (Principal Component Analysis) algorithm is integrated with class balancing. Python is executed to implement the introduced model. Diverse metrics are considered to analyze the results concerning accuracy, precision and recall.\",\"PeriodicalId\":436231,\"journal\":{\"name\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"volume\":\"53 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCAT52182.2021.9587763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT52182.2021.9587763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件产品是指为满足特定需求而开发的软件。同时,工程处理产品的开发使用明确的技术基础和方法。软件缺陷可以在不同的阶段进行预测,在这些阶段中,数据被用作输入和预处理,属性被提取,分类被执行。本研究工作实现了多种分类器来预测软件缺陷。这些分类器是GNB(高斯朴素贝叶斯),伯努利NB, RF(随机森林)和MLP(多层感知器),它们的目的是预测软件缺陷。通过开发集成分类器,提高了软件缺陷的性能。在引入的集成分类器中,将主成分分析(PCA)算法与类平衡相结合。执行Python来实现引入的模型。考虑了不同的指标来分析准确度、精密度和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Classification Approach for Software Defect Prediction with Feature Reduction and Clustering
Software product refers to the software which is developed for a specific requirement. Simultaneously, engineering deals with the development of product using explicit technical fundamentals and methods. The software defect can be predicted in diverse stages in which data is utilized as input and pre-processed, attributes are extracted, and classification is performed. This research work makes the implementation of several classifiers in order to predict the software defect. These classifiers are GNB (gaussian naive bayes), Bernoulli NB, RF (random forest) and MLP (multilayer perceptron) which are employed with the objective of forecasting the software defect. The performance of the software defect is enhanced by developing an ensemble classifier. In the introduced ensemble classifier, the PCA (Principal Component Analysis) algorithm is integrated with class balancing. Python is executed to implement the introduced model. Diverse metrics are considered to analyze the results concerning accuracy, precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Detection and Script Identification from Images using CNN An Analysis of Applications of Nanotechnology in Science and Engineering Design & Development of Insurance Money Predictor to Claim with Insurance Company Modified Non-Linear Programming Methodology for Multi-Attribute Decision-Making Problem with Interval-Valued Intuitionistic Fuzzy Soft Sets Information Distributed File Storage Model using IPFS and Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1