一种跨语言情感词典构建方法

Chia-Hsuan Chang, Ming-Lun Wu, San-Yih Hwang
{"title":"一种跨语言情感词典构建方法","authors":"Chia-Hsuan Chang, Ming-Lun Wu, San-Yih Hwang","doi":"10.1109/BigDataCongress.2019.00030","DOIUrl":null,"url":null,"abstract":"Lexicon-based sentiment analysis is a popular and practical approach for sentiment analysis. However, sentiment lexicons, which may be abundant in some language such as English, are scarce in many other languages. The cross-lingual lexicon learning aims to extend lexicons for the language with less resources from those lexicons available in other languages. In this paper, we propose an approach that builds a skip-gram variant to map word spaces across languages so as to construct lexicons for the language with less resources. We show in our preliminary experiment that our approach can generate lexicons that are similar to those crafted by human experts.","PeriodicalId":335850,"journal":{"name":"2019 IEEE International Congress on Big Data (BigDataCongress)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Approach to Cross-Lingual Sentiment Lexicon Construction\",\"authors\":\"Chia-Hsuan Chang, Ming-Lun Wu, San-Yih Hwang\",\"doi\":\"10.1109/BigDataCongress.2019.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lexicon-based sentiment analysis is a popular and practical approach for sentiment analysis. However, sentiment lexicons, which may be abundant in some language such as English, are scarce in many other languages. The cross-lingual lexicon learning aims to extend lexicons for the language with less resources from those lexicons available in other languages. In this paper, we propose an approach that builds a skip-gram variant to map word spaces across languages so as to construct lexicons for the language with less resources. We show in our preliminary experiment that our approach can generate lexicons that are similar to those crafted by human experts.\",\"PeriodicalId\":335850,\"journal\":{\"name\":\"2019 IEEE International Congress on Big Data (BigDataCongress)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Congress on Big Data (BigDataCongress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2019.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Congress on Big Data (BigDataCongress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于词典的情感分析是一种流行且实用的情感分析方法。然而,情感词汇在某些语言(如英语)中可能是丰富的,而在许多其他语言中则是稀缺的。跨语言词汇学习的目的是在资源较少的情况下,从其他语言的词汇中扩充本语言的词汇。在本文中,我们提出了一种构建跨语言的跳格变体来映射词空间的方法,从而为资源较少的语言构建词汇。我们在初步实验中表明,我们的方法可以生成与人类专家制作的相似的词汇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Approach to Cross-Lingual Sentiment Lexicon Construction
Lexicon-based sentiment analysis is a popular and practical approach for sentiment analysis. However, sentiment lexicons, which may be abundant in some language such as English, are scarce in many other languages. The cross-lingual lexicon learning aims to extend lexicons for the language with less resources from those lexicons available in other languages. In this paper, we propose an approach that builds a skip-gram variant to map word spaces across languages so as to construct lexicons for the language with less resources. We show in our preliminary experiment that our approach can generate lexicons that are similar to those crafted by human experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PREMISES, a Scalable Data-Driven Service to Predict Alarms in Slowly-Degrading Multi-Cycle Industrial Processes Context-Aware Enforcement of Privacy Policies in Edge Computing Efficient Re-Computation of Big Data Analytics Processes in the Presence of Changes: Computational Framework, Reference Architecture, and Applications Reducing Feature Embedding Data for Discovering Relations in Big Text Data Distributed, Numerically Stable Distance and Covariance Computation with MPI for Extremely Large Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1