Bin Che, Zelong Zhang, Dongni Wei, Panlong Jin, Yan Yang
{"title":"统筹规划源-网-荷-蓄电力系统,促进可再生能源大规模消纳","authors":"Bin Che, Zelong Zhang, Dongni Wei, Panlong Jin, Yan Yang","doi":"10.1109/ACFPE56003.2022.9952299","DOIUrl":null,"url":null,"abstract":"With the increase of wind and solar power plants, the uncertainty of their output also brings challenges to the power system. These factors should also be considered in long-term planning of the power system. Therefore, a source-grid-load-storage power system coordinated expansion planning model that considers demand response services is proposed in this paper. In this way, the ability to absorb large-scale renewable energy such as light and wind in the power system is improved. First, the power system operation model is proposed in this paper; secondly, the demand response services and electricity storage facility are modeled in detail; then demand response and electricity storage facility resources are used to alleviate the intermittent output of wind and solar power plants on the power side. A load-side demand response service planning model is proposed, and a source-network-load coordination planning model is proposed. Finally, the rationality of the model is verified through the analysis of simulation examples, and the advantages of the coordinated planning of source-grid-load-storage power system are proved. In addition, it can effectively guarantee the safety of power system operation and improve the absorption capacity of wind and light energy.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coordinated planning of source-grid-load-storage power system to promote large-scale renewable energy consumption\",\"authors\":\"Bin Che, Zelong Zhang, Dongni Wei, Panlong Jin, Yan Yang\",\"doi\":\"10.1109/ACFPE56003.2022.9952299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase of wind and solar power plants, the uncertainty of their output also brings challenges to the power system. These factors should also be considered in long-term planning of the power system. Therefore, a source-grid-load-storage power system coordinated expansion planning model that considers demand response services is proposed in this paper. In this way, the ability to absorb large-scale renewable energy such as light and wind in the power system is improved. First, the power system operation model is proposed in this paper; secondly, the demand response services and electricity storage facility are modeled in detail; then demand response and electricity storage facility resources are used to alleviate the intermittent output of wind and solar power plants on the power side. A load-side demand response service planning model is proposed, and a source-network-load coordination planning model is proposed. Finally, the rationality of the model is verified through the analysis of simulation examples, and the advantages of the coordinated planning of source-grid-load-storage power system are proved. In addition, it can effectively guarantee the safety of power system operation and improve the absorption capacity of wind and light energy.\",\"PeriodicalId\":198086,\"journal\":{\"name\":\"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACFPE56003.2022.9952299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACFPE56003.2022.9952299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coordinated planning of source-grid-load-storage power system to promote large-scale renewable energy consumption
With the increase of wind and solar power plants, the uncertainty of their output also brings challenges to the power system. These factors should also be considered in long-term planning of the power system. Therefore, a source-grid-load-storage power system coordinated expansion planning model that considers demand response services is proposed in this paper. In this way, the ability to absorb large-scale renewable energy such as light and wind in the power system is improved. First, the power system operation model is proposed in this paper; secondly, the demand response services and electricity storage facility are modeled in detail; then demand response and electricity storage facility resources are used to alleviate the intermittent output of wind and solar power plants on the power side. A load-side demand response service planning model is proposed, and a source-network-load coordination planning model is proposed. Finally, the rationality of the model is verified through the analysis of simulation examples, and the advantages of the coordinated planning of source-grid-load-storage power system are proved. In addition, it can effectively guarantee the safety of power system operation and improve the absorption capacity of wind and light energy.